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Preface

Flight mechanics is the application of Newton’s laws (F=ma and M=Iα) to
the study of vehicle trajectories (performance), stability, and aerodynamic
control. There are two basic problems in airplane flight mechanics: (1) given
an airplane what are its performance, stability, and control characteristics?
and (2) given performance, stability, and control characteristics, what is the
airplane? The latter is called airplane sizing and is based on the definition
of a standard mission profile. For commercial airplanes including business
jets, the mission legs are take-off, climb, cruise, descent, and landing. For a
military airplane additional legs are the supersonic dash, fuel for air combat,
and specific excess power. This text is concerned with the first problem, but
its organization is motivated by the structure of the second problem. Tra-
jectory analysis is used to derive formulas and/or algorithms for computing
the distance, time, and fuel along each mission leg. In the sizing process, all
airplanes are required to be statically stable. While dynamic stability is not
required in the sizing process, the linearized equations of motion are used in
the design of automatic flight control systems.

This text is primarily concerned with analytical solutions of airplane flight
mechanics problems. Its design is based on the precepts that there is only one
semester available for the teaching of airplane flight mechanics and that it is
important to cover both trajectory analysis and stability and control in this
course. To include the fundamentals of both topics, the text is limited mainly
to flight in a vertical plane. This is not very restrictive because, with the
exception of turns, the basic trajectory segments of both mission profiles and
the stability calculations are in the vertical plane. At the University of Texas
at Austin, this course is preceded by courses on low-speed aerodynamics and
linear system theory. It is followed by a course on automatic control.

The trajectory analysis portion of this text is patterned after Miele’s
flight mechanics text in terms of the nomenclature and the equations of mo-
tion approach. The aerodynamics prediction algorithms have been taken
from an early version of the NASA-developed business jet sizing code called
the General Aviation Synthesis Program or GASP. An important part of
trajectory analysis is trajectory optimization. Ordinarily, trajectory opti-
mization is a complicated affair involving optimal control theory (calculus of
variations) and/or the use of numerical optimization techniques. However,
for the standard mission legs, the optimization problems are quite simple
in nature. Their solution can be obtained through the use of basic calculus.



The nomenclature of the stability and control part of the text is based on the
writings of Roskam. Aerodynamic prediction follows that of the USAF Sta-
bility and Control Datcom. It is important to be able to list relatively simple
formulas for predicting aerodynamic quantities and to be able to carry out
these calculations throughout performance, stability, and control. Hence, it
is assumed that the airplanes have straight, tapered, swept wing planforms.

Flight mechanics is a discipline. As such, it has equations of motion, ac-
ceptable approximations, and solution techniques for the approximate equa-
tions of motion. Once an analytical solution has been obtained, it is impor-
tant to calculate some numbers to compare the answer with the assumptions
used to derive it and to acquaint students with the sizes of the numbers. The
Subsonic Business Jet (SBJ) defined in App. A is used for these calculations.

The text is divided into two parts: trajectory analysis and stability and
control. To study trajectories, the force equations (F=ma) are uncoupled
from the moment equations (M=Iα) by assuming that the airplane is not
rotating and that control surface deflections do not change lift and drag. The
resulting equations are referred to as the 3DOF model, and their investigation
is called trajectory analysis. To study stability and control, both F=ma and
M=Iα are needed, and the resulting equations are referred to as the 6DOF
model. An overview of airplane flight mechanics is presented in Chap. 1.

Part I: Trajectory Analysis. This part begins in Chap. 2 with the
derivation of the 3DOF equations of motion for flight in a vertical plane over
a flat earth and their discussion for nonsteady flight and quasi-steady flight.
Next in Chap. 3, the atmosphere (standard and exponential) is discussed,
and an algorithm is presented for computing lift and drag of a subsonic
airplane. The engines are assumed to be given, and the thrust and specific
fuel consumption are discussed for a subsonic turbojet and turbofan. Next,
the quasi-steady flight problems of cruise and climb are analyzed in Chap. 4
for an arbitrary airplane and in Chap. 5 for an ideal subsonic airplane. In
Chap. 6, an algorithm is presented for calculating the aerodynamics of high-
lift devices, and the nonsteady flight problems of take-off and landing are
discussed. Finally, the nonsteady flight problems of energy climbs, specific
excess power, energy-maneuverability, and horizontal turns are studied in
Chap. 7.

Part II: Stability and Control. This part of the text contains static
stability and control and dynamic stability and control. It is begun in Chap.
8 with the 6DOF model in wind axes. Following the discussion of the equa-
tions of motion, formulas are presented for calculating the aerodynamics of
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a subsonic airplane including the lift, the pitching moment, and the drag.
Chap. 9 deals with static stability and control. Trim conditions and static
stability are investigated for steady cruise, climb, and descent along with the
effects of center of gravity position. A simple control system is analyzed to
introduce the concepts of hinge moment, stick force, stick force gradient, and
handling qualities. Trim tabs and the effect of free elevator on stability are
discussed. Next, trim conditions are determined for a nonsteady pull-up, and
lateral-directional stability and control are discussed briefly. In Chap. 10,
the 6DOF equations of motion are developed first in regular body axes and
second in stability axes for use in the investigation of dynamic stability and
control. In Chap. 11, the equations of motion are linearized about a steady
reference path, and the stability and response of an airplane to a control
or gust input is considered. Finally, the effect of center of gravity position
is examined, and dynamic lateral-direction stability and control is discussed
descriptively.

There are three appendices. App. A gives the geometric characteristics
of a subsonic business jet, and results for aerodynamic calculations are listed,
including both static and dynamic stability and control results. In App. B,
the relationship between linearized aerodynamics (stability derivatives) and
the aerodynamics of Chap. 8 is established. Finally, App. C reviews the
elements of linear system theory which are needed for dynamic stability and
control studies.

While a number of students has worked on this text, the author is par-
ticularly indebted to David E. Salguero. His work on converting GASP into
an educational tool called BIZJET has formed the basis of a lot of this text.

David G. Hull
Austin, Texas
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Chapter 1

Introduction to Airplane

Flight Mechanics

Airplane flight mechanics can be divided into five broad areas: trajectory
analysis (performance), stability and control, aircraft sizing, simulation,
and flight testing. Only the theoretical aspects of trajectory analysis
and stability and control are covered in this text. Aircraft sizing and
simulation are essentially numerical in nature. Airplane sizing involves
an iterative process, and simulation involves the numerical integration
of a set of differential equations. They are discussed in this chapter to
show how they fit into the overall scheme of things. Flight testing is the
experimental part of flight mechanics. It is not discussed here except to
say that good theory makes good experiments.

The central theme of this text is the following: Given the three-
view drawing with dimensions of a subsonic, jet-powered airplane and
the engine data, determine its performance, stability, and control char-
acteristics. To do this, formulas for calculating the aerodynamics are
developed.

Most of the material in this text is limited to flight in a vertical
plane because the mission profiles for which airplanes are designed are
primarily in the vertical plane. This chapter begins with a review of
the parts of the airframe and the engines. Then, the derivation of the
equations governing the motion of an airplane is discussed. Finally, the
major areas of aircraft flight mechanics are described.



1.1 Airframe Anatomy

To begin the introduction, it is useful to review the parts of an airframe
and discuss their purposes. Fig. 1.1 is a three-view drawing of a Boeing
727. The body or fuselage of the airplane holds the crew, passengers, and
freight. It is carried aloft by the lift provided by the wing and propelled
by the thrust produced by jet engines housed in nacelles. This airplane
has two body-mounted engines and a body centerline engine whose inlet
air comes through an S-duct beginning at the front of the vertical tail.
The fuel is carried in tanks located in the wing.

Since a jet transport is designed for efficient high-speed cruise,
it is unable to take-off and land from standard-length runways without
some configuration change. This is provided partly by leading edge slats
and partly by trailing edge flaps. Both devices are used for take-off, with
a low trailing edge flap deflection. On landing, a high trailing edge flap
deflection is used to increase lift and drag, and brakes, reverse thrust,
and speed brakes (spoilers) are used to further reduce landing distance.

A major issue in aircraft design is static stability. An airplane
is said to be inherently aerodynamically statically stable if, following
a disturbance from a steady flight condition, forces and/or moments
develop which tend to reduce the disturbance. Shown in Fig. 1.2 is the
body axes system whose origin is at the center of gravity and whose
xb, yb, and zb axes are called the roll axis, the pitch axis, and the yaw
axis. Static stability about the yaw axis (directional stability) is provided
by the vertical stabilizer, whereas the horizontal stabilizer makes the
airplane statically stable about the pitch axis (longitudinal stability).
Static stability about the roll axis (lateral stability) is provided mainly
by wing dihedral which can be seen in the front view in Fig. 1.1.

Also shown in Figs. 1.1 and 1.2 are the control surfaces which
are intended to control the rotation rates about the body axes (roll rate
P, pitch rate Q, and yaw rate R) by controlling the moments about
these axes (roll moment L, pitch moment M, and yaw moment N). The
convention for positive moments and rotation rates is to grab an axis
with the thumb pointing toward the origin and rotate counterclockwise
looking down the axis toward the origin. From the pilot’s point of view,
a positive moment or rate is roll right, pitch up, and yaw right.

The deflection of a control surface changes the curvature of a
wing or tail surface, changes its lift, and changes its moment about the
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Figure 1.1: Three-View Drawing of a Boeing 727
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Figure 1.2: Body Axes, Moments, Rates, and Controls

corresponding body axis. Hence, the ailerons (one deflected upward and
one deflected downward) control the roll rate; the elevator controls the
pitch rate; and the rudder controls the yaw rate. Unlike pitching motion,
rolling and yawing motions are not pure. In deflecting the ailerons to roll
the airplane, the down-going aileron has more drag than the up-going
aileron which causes the airplane to yaw. Similarly, in deflecting the
rudder to yaw the airplane, a rolling motion is also produced. Cures for
these problems include differentially deflected ailerons and coordinating
aileron and rudder deflections. Spoilers are also used to control roll rate
by decreasing the lift and increasing the drag on the wing into the turn.
Here, a yaw rate is developed into the turn. Spoilers are not used near
the ground for rol1 control because the decreased lift causes the airplane
to descend.

The F-16 (lightweight fighter) is statically unstable in pitch at
subsonic speeds but becomes statically stable at supersonic speeds be-
cause of the change in aerodynamics from subsonic to supersonic speeds.
The airplane was designed this way to make the horizontal tail as small
as possible and, hence, to make the airplane as light as possible. At
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subsonic speeds, pitch stability is provided by the automatic flight con-
trol system. A rate gyro senses a pitch rate, and if the pitch rate is not
commanded by the pilot, the elevator is deflected automatically to zero
the pitch rate. All of this happens so rapidly (at the speed of electrons)
that the pilot is unaware of these rotations.

1.2 Engine Anatomy

In this section, the various parts of jet engines are discussed. There are
two types of jet engines in wide use: the turbojet and the turbofan.

A schematic of a turbojet is shown in Fig. 1.3. Air entering the
engine passes through the diffuser which slows the air to a desired speed
for entering the compressor. The compressor increases the pressure of
the air and slows it down more. In the combustion chamber (burner),
fuel is added to the air, and the mixture is ignited and burned. Next,
the high temperature stream passes through the turbine which extracts
enough energy from the stream to run the compressor. Finally, the
nozzle increases the speed of the stream before it exits the engine.

Diffuser

Compressor

Burner

Turbine

Nozzle

Figure 1.3: Schematic of a Turbojet Engine

The engine cycle is a sequence of assumptions describing how
the flow behaves as it passes through the various parts of the engine.
Given the engine cycle, it is possible to calculate the thrust (lb) and the
fuel flow rate (lb/hr) of the engine. Then, the specific fuel consumption
(1/hr) is the ratio of the fuel flow rate to the thrust.

A schematic of a turbofan is shown in Fig. 1.4. The turbofan
is essentially a turbojet which drives a fan located after the diffuser and
before the compressor. The entering air stream is split into a primary
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part which passes through the turbojet and a secondary part which goes
around the turbojet. The split is defined by the bypass ratio, which is
the ratio of the air mass flow rate around the turbojet to the air mass
flow rate through the turbojet. Usually, the fan is connected to its own
turbine by a shaft, and the compressor is connected to its turbine by a
hollow shaft which rotates around the fan shaft.

Fan

Figure 1.4: Schematic of a Turbofan Engine

1.3 Equations of Motion

In this text, the term flight mechanics refers to the analysis of airplane
motion using Newton’s laws. While most aircraft structures are flexible
to some extent, the airplane is assumed here to be a rigid body. When
fuel is being consumed, the airplane is a variable-mass rigid body.

Newton’s laws are valid when written relative to an inertial
reference frame, that is, a reference frame which is not accelerating or
rotating. If the equations of motion are derived relative to an inertial
reference frame and if approximations characteristic of airplane motion
are introduced into these equations, the resulting equations are those
for flight over a nonrotating flat earth. Hence, for airplane motion, the
earth is an approximate inertial reference frame, and this model is called
the flat earth model. The use of this physical model leads to a small
error in most analyses.

A general derivation of the equations of motion involves the
use of a material system involving both solid and fluid particles. The
end result is a set of equations giving the motion of the solid part of the
airplane subject to aerodynamic, propulsive and gravitational forces. To
simplify the derivation of the equations of motion, the correct equations
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for the forces are assumed to be known. Then, the equations describing
the motion of the solid part of the airplane are derived.

The airplane is assumed to have a right-left plane of symmetry
with the forces acting at the center of gravity and the moments acting
about the center of gravity. Actually, the forces acting on an airplane
in fight are due to distributed surface forces and body forces. The sur-
face forces come from the air moving over the airplane and through the
propulsion system, while the body forces are due to gravitational effects.
Any distributed force (see Fig. 1.5) can be replaced by a concentrated
force acting along a specific line of action. Then, to have all forces act-
ing through the same point, the concentrated force can be replaced by
the same force acting at the point of interest plus a moment about that
point to offset the effect of moving the force. The point usually chosen
for this purpose is the center of mass, or equivalently for airplanes the
center of gravity, because the equations of motion are the simplest.

F F

F

M = Fd

F

d

Line of action

Figure 1.5: Distributed Versus Concentrated Forces

The equations governing the translational and rotational mo-
tion of an airplane are the following:

a. Kinematic equations giving the translational position and
rotational position relative to the earth reference frame.

b. Dynamic equations relating forces to translational accelera-
tion and moments to rotational acceleration.

c. Equations defining the variable-mass characteristics of the
airplane (center of gravity, mass and moments of inertia) versus time.

d. Equations giving the positions of control surfaces and other
movable parts of the airplane (landing gear, flaps, wing sweep, etc.)
versus time.
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These equations are referred to as the six degree of freedom
(6DOF) equations of motion. The use of these equations depends on the
particular area of flight mechanics being investigated.

1.4 Trajectory Analysis

Most trajectory analysis problems involve small aircraft rotation rates
and are studied through the use of the three degree of freedom (3DOF)
equations of motion, that is, the translational equations. These equa-
tions are uncoupled from the rotational equations by assuming negligi-
ble rotation rates and neglecting the effect of control surface deflections
on aerodynamic forces. For example, consider an airplane in cruise.
To maintain a given speed an elevator deflection is required to make
the pitching moment zero. This elevator defection contributes to the
lift and the drag of the airplane. By neglecting the contribution of
the elevator deflection to the lift and drag (untrimmed aerodynamics),
the translational and rotational equations uncouple. Another approach,
called trimmed aerodynamics, is to compute the control surface angles
required for zero aerodynamic moments and eliminate them from the
aerodynamic forces. For example, in cruise the elevator angle for zero
aerodynamic pitching moment can be derived and eliminated from the
drag and the lift. In this way, the extra aerodynamic force due to control
surface deflection can be taken into account.

Trajectory analysis takes one of two forms. First, given an
aircraft, find its performance characteristics, that is, maximum speed,
ceiling, range, etc. Second, given certain performance characteristics,
what is the airplane which produces them. The latter is called aircraft
sizing, and the missions used to size commercial and military aircraft
are presented here to motivate the discussion of trajectory analysis. The
mission or flight profile for sizing a commercial aircraft (including busi-
ness jets) is shown in Fig. 1.6. It is composed of take-off, climb, cruise,
descent, and landing segments, where the descent segment is replaced
by an extended cruise because the fuel consumed is approximately the
same. In each segment, the distance traveled, the time elapsed, and the
fuel consumed must be computed to determine the corresponding quan-
tities for the whole mission. The development of formulas or algorithms
for computing these performance quantities is the charge of trajectory
analysis. The military mission (Fig. 1.7) adds three performance com-
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putations: a constant-altitude acceleration (supersonic dash), constant-
altitude turns, and specific excess power (PS). The low-altitude dash
gives the airplane the ability to approach the target within the radar
ground clutter, and the speed of the approach gives the airplane the
ability to avoid detection until it nears the target. The number of turns
is specified to ensure that the airplane has enough fuel for air combat in
the neighborhood of the target. Specific excess power is a measure of the
ability of the airplane to change its energy, and it is used to ensure that
the aircraft being designed has superior maneuver capabilities relative
to enemy aircraft protecting the target. Note that, with the exception
of the turns, each segment takes place in a plane perpendicular to the
surface of the earth (vertical plane). The turns take place in a horizontal
plane.

Take-off

Climb

Cruise

Extended

Cruise

Descent

Landing
Range

Figure 1.6: Mission for Commercial Aircraft Sizing

Take-off

Landing Climb

Cruise

Supersonic Dash

Subsonic Turns

Supersonic Turns

Return Cruise

Target

PS

Figure 1.7: Mission for Military Aircraft Sizing

These design missions are the basis for the arrangement of the
trajectory analysis portion of this text. In Chap. 2, the equations of
motion for flight in a vertical plane over a flat earth are derived, and
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their solution is discussed. Chap. 3 contains the modeling of the atmo-
sphere, aerodynamics, and propulsion. Both the standard atmosphere
and the exponential atmosphere are discussed. An algorithm for pre-
dicting the drag polar of a subsonic airplane from a three-view drawing
is presented, as is the parabolic drag polar. Engine data is assumed
to be available and is presented for a subsonic turbojet and turbofan.
Approximate analytical expressions are obtained for thrust and specific
fuel consumption.

The mission legs characterized by quasi-steady flight (climb,
cruise, and descent) are analyzed in Chap. 4. Algorithms for computing
distance, time, and fuel are presented for arbitrary aerodynamics and
propulsion, and numerical results are developed for a subsonic business
jet. In Chap. 5 approximate analytical results are derived by assuming
an ideal subsonic airplane: parabolic drag polar with constant coef-
ficients, thrust independent of velocity, and specific fuel consumption
independent of velocity and power setting. The approximate analytical
results are intended to be used to check the numerical results and for
making quick predictions of performance.

Next, the mission legs characterized by accelerated flight are
investigated. Take-off and landing are considered in Chap. 6. Specific
excess power, PS, and constant altitude turns are analyzed in Chap. 7.
However, the supersonic dash is not considered because it involves flight
through the transonic region.

In general, the airplane is a controllable dynamical system.
Hence, the differential equations which govern its motion contain more
variables than equations. The extra variables are called control variables.
It is possible to solve the equations of motion by specifying the control
histories or by specifying some flight condition, say constant altitude
and constant velocity, and solving for the controls. On the other hand,
because the controls are free to be chosen, it is possible to find the
control histories which optimize some index of performance (for example,
maximum distance in cruise). Trajectory optimization problems such
as these are handled by a mathematical theory known as Calculus of
Variations or Optimal Control Theory. While the theory is beyond the
scope of this text, many aircraft trajectory optimization problems can be
formulated as simple optimization problems whose theory can be derived
by simple reasoning.
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1.5 Stability and Control

Stability and control studies are concerned with motion of the center
of gravity (cg) relative to the ground and motion of the airplane about
the cg. Hence, stability and control studies involve the use of the six
degree of freedom equations of motion. These studies are divided into
two major categories: (a) static stability and control and (b) dynamic
stability and control. Because of the nature of the solution process, each
of the categories is subdivided into longitudinal motion (pitching motion)
and lateral-directional motion (combined rolling and yawing motion).
While trajectory analyses are performed in terms of force coefficients
with control surface deflections either neglected (untrimmed drag polar)
or eliminated (trimmed drag polar), stability and control analyses are in
terms of the orientation angles (angle of attack and sideslip angle) and
the control surface deflections.

The six degree of freedom model for flight in a vertical plane
is presented in Chap. 8. First, the equations of motion are derived in
the wind axes system. Second, formulas for calculating subsonic aero-
dynamics are developed for an airplane with a straight, tapered, swept
wing. The aerodynamics associated with lift and pitching moment are
shown to be linear in the angle of attack, the elevator angle, the pitch
rate, and the angle of attack rate. The aerodynamics associated with
drag is shown to be quadratic in angle of attack. Each coefficient in
these relationships is a function of Mach number.

Chap. 9 is concerned with static stability and control. Static
stability and control for quasi-steady flight is concerned primarily with
four topics: trim conditions, static stability, center of gravity effects, and
control force and handling qualities. The trim conditions are the orienta-
tion angles and control surface deflections required for a particular flight
condition. Given a disturbance from a steady flight condition, static
stability investigates the tendency of the airplane to reduce the distur-
bance. This is done by looking at the signs of the forces and moments.
Fore and aft limits are imposed on allowable cg locations by maximum
allowable control surface deflections and by stability considerations, the
aft cg limit being known as the neutral point because it indicates neu-
tral stability. Handling qualities studies are concerned with pilot-related
quantities such as control force and how control force changes with flight
speed. These quantities are derived from aerodynamic moments about
control surface hinge lines. Trim tabs have been introduced to allow the
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pilot to zero out the control forces associated with a particular flight con-
dition. However, if after trimming the stick force the pilot flies hands-off,
the stability characteristics of the airplane are reduced.

To investigate static stability and control for accelerated flight,
use is made of a pull-up. Of interest is the elevator angle required to
make an n-g turn or pull-up. There is a cg position where the elevator
angle per g goes to zero, making the airplane too easy to maneuver. This
cg position is called the maneuver point. There is another maneuver
point associated with the stick force required to make an n-g pull-up.

While dynamic stability and control studies can be conducted
using wind axes, it is the convention to use body axes. Hence, in Chap.
10, the equations of motion are derived in the body axes. The aerody-
namics need for body axes is the same as that used in wind axes. A
particular set of body axes is called stability axes. The equations of
motion are also developed for stability axes.

Dynamic stability and control is concerned with the motion of
an airplane following a disturbance such as a wind gust (which changes
the speed, the angle of attack and/or the sideslip angle) or a control
input. While these studies can and are performed using detailed com-
puter simulations, it is difficult to determine cause and effect. As a con-
sequence, it is desirable to develop an approximate analytical approach.
This is done in Chap. 11 by starting with the airplane in a quasi-steady
flight condition (given altitude, Mach number, weight, power setting)
and introducing a small disturbance. By assuming that the changes in
the variables are small, the equations of motion can be linearized about
the steady flight condition. This process leads to a system of linear,
ordinary differential equations with constant coefficients. As is known
from linear system theory, the response of an airplane to a disturbance is
the sum of a number of motions called modes. While it is not necessary
for each mode to be stable, it is necessary to know for each mode the
stability characteristics and response characteristics. A mode can be un-
stable providing its response characteristics are such that the pilot can
easily control the airplane. On the other hand, even if a mode is stable,
its response characteristics must be such that the airplane handles well
(handling qualities). The design problem is to ensure that an aircraft
has desirable stability and response characteristics thoughout the flight
envelope and for all allowable cg positions. During this part of the de-
sign process, it may no longer be possible to modify the configuration,
and automatic control solutions may have to be used.
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App. A contains the geometric and aerodynamic data used in
the text to compute performance, stability and control characteristics
of a subsonic business jet called the SBJ throughout the text. App. B
gives the relationship between the stability derivatives of Chap. 11 and
the aerodynamics of Chap. 8. Finally, App. C contains a review of
linear system theory for first-order systems and second-order systems.

1.6 Aircraft Sizing

While aircraft sizing is not covered in this text, it is useful to discuss the
process to see where performance and static stability fit into the picture.

Consider the case of sizing a subsonic business jet to have a
given range at a given cruise altitude. Furthermore, the aircraft must

The first step in the design
process is to perform conceptual design. Here, the basic configuration
is selected, which essentially means that a three-view drawing of the
airplane can be sketched (no dimensions). The next step is to size the
engines and the wing so that the mission can be performed. To size an
engine, the performance of an actual engine is scaled up or down. See
Fig. 1.8 for a flow chart of the sizing process. The end result of the
sizing process is a three-view drawing of an airplane with dimensions.

The sizing process is iterative and begins by guessing the take-
off gross weight, the engine size (maximum sea level static thrust), and
the wing size (wing planform area). Next, the geometry of the airplane
is determined by assuming that the center of gravity is located at the
wing aerodynamic center, so that the airplane is statically stable. On the
first iteration, statistical formulas are used to locate the horizontal and
vertical tails. After the first iteration, component weights are available,
and statistical formulas are used to place the tails. Once the geometry
is known, the aerodynamics (drag polar) is estimated.

The next step is to fly the airplane through the mission. If the
take-off distance is too large, the maximum thrust is increased, and the
mission is restarted. Once take-off can be accomplished, the maximum
rate of climb at the cruise altitude is determined. If it is less than
the required value, the maximum thrust is increased, and the mission
is restarted. The last constraint is landing distance. If the landing
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mum rate of climb at the cruise altitude.
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Figure 1.8: Aircraft Sizing Flowchart

distance is too large, the wing planform area is changed, and the mission
is restarted. Here, however, the geometry and the aerodynamics must
be recomputed.

Once the airplane can be flown through the entire mission,
the amount of fuel required is known. Next, the fuel is allocated to
wing, tip, and fuselage tanks, and statistical weights formulas are used
to estimate the weight of each component and, hence, the take-off gross
weight. If the computed take-off gross weight is not close enough to
the guessed take-off gross weight, the entire process is repeated with
the computed take-off gross weight as the guessed take-off gross weight.
Once convergence has been achieved, the flyaway cost and the operating
cost can be estimated.

1.7 Simulation

Simulations come in all sizes, but they are essentially computer programs
that integrate the equations of motion. They are used to evaluate the
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flight characteristics of a vehicle. In addition to being run as computer
programs, they can be used with working cockpits to allow pilots to
evaluate handling qualities.

A major effort of an aerospace company is the creation of a
high-fidelity 6DOF simulation for each of the vehicles it is developing.
The simulation is modular in nature in that the aerodynamics function
or subroutine is maintained by aerodynamicists, and so on.

Some performance problems, such as the spin, have so much
interaction between the force and moment equations that they may have
to be analyzed with six degree of freedom codes. These codes would
essentially be simulations.
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Chapter 2

3DOF Equations of Motion

An airplane operates near the surface of the earth which moves about the
sun. Suppose that the equations of motion (F = ma and M = Iα) are
derived for an accurate inertial reference frame and that approximations
characteristic of airplane flight (altitude and speed) are introduced into
these equations. What results is a set of equations which can be obtained
by assuming that the earth is flat, nonrotating, and an approximate
inertial reference frame, that is, the flat earth model.

The equations of motion are composed of translational (force)
equations (F = ma) and rotational (moment) equations (M = Iα)
and are called the six degree of freedom (6DOF) equations of motion.
For trajectory analysis (performance), the translational equations are
uncoupled from the rotational equations by assuming that the airplane
rotational rates are small and that control surface deflections do not
affect forces. The translational equations are referred to as the three
degree of freedom (3DOF) equations of motion.

As discussed in Chap. 1, two important legs of the commercial
and military airplane missions are the climb and the cruise which occur
in a vertical plane (a plane perpendicular to the surface of the earth).
The purpose of this chapter is to derive the 3DOF equations of motion
for flight in a vertical plane over a flat earth. First, the physical model is
defined; several reference frames are defined; and the angular positions
and rates of these frames relative to each other are determined. Then,
the kinematic, dynamic, and weight equations are derived and discussed
for nonsteady and quasi-steady flight. Next, the equations of motion for
flight over a spherical earth are examined to find out how good the flat
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earth model really is. Finally, motivated by such problems as flight in
a headwind, flight in the downwash of a tanker, and flight through a
downburst, the equations of motion for flight in a moving atmosphere
are derived.

2.1 Assumptions and Coordinate Systems

In deriving the equations of motion for the nonsteady flight of an airplane
in a vertical plane over a flat earth, the following physical model is
assumed:

a. The earth is flat, nonrotating, and an approximate inertial refer-
ence frame. The acceleration of gravity is constant and perpen-
dicular to the surface of the earth. This is known as the flat earth

model.

b. The atmosphere is at rest relative to the earth, and atmospheric
properties are functions of altitude only.

c. The airplane is a conventional jet airplane with fixed engines, an
aft tail, and a right-left plane of symmetry. It is modeled as a
variable-mass particle.

d. The forces acting on an airplane in symmetric flight (no sideslip)
are the thrust, the aerodynamic force, and the weight. They act
at the center of gravity of the airplane, and the thrust and the
aerodynamic force lie in the plane of symmetry.

The derivation of the equations of motion is clarified by defining
a number of coordinate systems. For each coordinate system that moves
with the airplane, the x and z axes are in the plane of symmetry of the
airplane, and the y axis is such that the system is right handed. The x
axis is in the direction of motion, while the z axis points earthward if
the aircraft is in an upright orientation. Then, the y axis points out the
right wing (relative to the pilot). The four coordinate systems used here
are the following (see Fig. 2.1):

a. The ground axes system Exyz is fixed to the surface of the earth
at mean sea level, and the xz plane is the vertical plane. It is an
approximate inertial reference frame.
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b. The local horizon axes system Oxhyhzh moves with the airplane (O
is the airplane center of gravity), but its axes remain parallel to
the ground axes.

c. The wind axes system Oxwywzw moves with the airplane, and the
xw axis is coincident with the velocity vector.

d. The body axes system Oxbybzb is fixed to the airplane.

These coordinate systems and their orientations are the convention in
flight mechanics (see, for example, Ref. Mi1).

The coordinate systems for flight in a vertical plane are shown
in Fig. 2.1, where the airplane is located at an altitude h above mean sea
level. In the figure, V denotes the velocity of the airplane relative to the
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Figure 2.1: Coordinate Systems for Flight in a Vertical Plane

air; however, since the atmosphere is at rest relative to the ground, V

is also the velocity of the airplane relative to the ground. Note that the
wind axes are orientated relative to the local horizon axes by the flight

path angle γ, and the body axes are orientated relative to the wind axes
by the angle of attack α.
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The unit vectors associated with the coordinate directions are
denoted by i, j, and k with appropriate subscripts. Since the local hori-
zon axes are always parallel to the ground axes, their unit vectors are
equal, that is,

ih = i

kh = k .
(2.1)

Next, the wind axes unit vectors are related to the local horizon unit
vectors as

iw = cos γih − sin γkh

kw = sin γih + cos γkh .
(2.2)

Since the unit vectors (2.1) are constant (fixed magnitude and direction),
it is seen that

dih

dt
= di

dt
= 0

dkh

dt
= dk

dt
= 0 .

(2.3)

Then, by straight differentiation of Eqs. (2.2), the following relations
are obtained:

diw

dt
= −γ̇kw

dkw

dt
= γ̇iw .

(2.4)

The body axes are used primarily to define the angle of attack
and will be discussed later.

2.2 Kinematic Equations

Kinematics is used to derive the differential equations for x and h which
locate the airplane center of gravity relative to the origin of the ground
axes system (inertial position). The definition of velocity relative to the
ground (inertial velocity) is given by

V =
dEO

dt
, (2.5)

where the derivative is taken holding the ground unit vectors constant.
The velocity V and the position vector EO must be expressed in the
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same coordinate system to obtain the corresponding scalar equations.
Here, the local horizon system is used where

V = V iw = V cos γih − V sin γkh

EO = xi − hk = xih − hkh .
(2.6)

Since the unit vectors ih and kh are constant, Eq. (2.5) becomes

V cos γih − V sin γkh = ẋih − ḣkh (2.7)

and leads to the following scalar equations:

ẋ = V cos γ

ḣ = V sin γ .
(2.8)

These equations are the kinematic equations of motion for flight in a
vertical plane.

2.3 Dynamic Equations

Dynamics is used to derive the differential equations for V and γ which
define the velocity vector of the airplane center of gravity relative to the
ground. Newton’s second law states that

F = ma (2.9)

where F is the resultant external force acting on the airplane, m is the
mass of the airplane, and a is the inertial acceleration of the airplane.
For the normal operating conditions of airplanes (altitude and speed),
a reference frame fixed to the earth is an approximate inertial frame.
Hence, a is approximated by the acceleration of the airplane relative to
the ground.

The resultant external force acting on the airplane is given by

F = T + A + W (2.10)

where T is the thrust, A is the aerodynamic force, and W is the weight.
These concentrated forces are the result of having integrated the dis-
tributed forces over the airplane and having moved them to the center



2.3. Dynamic Equations 21

of gravity with appropriate moments. Recall that the moments are not
needed because the force and moment equations have been uncoupled.
By definition, the components of the aerodynamic force parallel and
perpendicular to the velocity vector are called the drag and the lift so
that

A = D + L . (2.11)

These forces are shown in Fig. 2.2 where the thrust vector is orientated
relative to the velocity vector by the angle ε which is referred to as the
thrust angle of attack.

W

D

L

T

Vε

γ

O

A

iw

kw

Figure 2.2: Forces Acting on an Airplane in Flight

In order to derive the scalar equations, it is necessary to select
a coordinate system. While the local horizon system is used for obtain-
ing the kinematic equations, a more direct derivation of the dynamic
equations is possible by using the wind axes system. In this coordinate
system, the forces acting on the airplane can be written as

T = T cos εiw − T sin εkw

D = −Diw

L = −Lkw

W = −W sin γiw +W cos γkw

(2.12)

so that the resultant external force becomes

F = (T cos ε−D −W sin γ)iw − (T sin ε+ L−W cos γ)kw . (2.13)
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By definition of acceleration relative to the ground,

a =
dV

dt
(2.14)

holding the ground axes unit vectors constant. Since the velocity is along
the xw axis, it can be expressed as

V = V iw (2.15)

where both the velocity magnitude V and the direction of the unit vector
iw are functions of time. Differentiation leads to

a = V̇ iw + V
diw

dt
, (2.16)

and in view of Eq. (2.4) the acceleration of the airplane with respect to
the ground is given by

a = V̇ iw − V γ̇kw. (2.17)

By combining Eqs. (2.9), (2.13), and (2.17), the following scalar equa-
tions are obtained:

V̇ = (g/W )(T cos ε−D −W sin γ)

γ̇ = (g/WV )(T sin ε+ L−W cos γ)
(2.18)

where g is the constant acceleration of gravity and where the relation
W = mg has been used.

For conventional aircraft, the engines are fixed to the aircraft.
This means that the angle between the thrust vector and the xb axis is
constant. Hence, from Fig. 2.3, it is seen that

ε = α+ ε0 (2.19)

where ε0 is the value of ε when α = 0 or the angle which the engine
centerline makes with the xb axis. Then, Eqs. (2.18) can be rewritten
as

V̇ = (g/W )[T cos(α + ε0) −D −W sin γ]

γ̇ = (g/WV )[T sin(α+ ε0) + L−W cos γ]
(2.20)

and are the dynamic equations for flight in a vertical plane.
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2.4 Weight Equation

By definition of the fuel weight flow rate Ẇfuel, the rate of change of the
weight of the aircraft is given by

Ẇ = −Ẇfuel (2.21)

Next, the specific fuel consumption

C =
Ẇfuel

T
(2.22)

is introduced because it has some special properties. The weight equation

becomes
Ẇ = −CT. (2.23)

and gives the rate at which the weight of the aircraft is changing in terms
of the operating conditions of the propulsion system.

2.5 Discussion of 3DOF Equations

The equations of motion for nonsteady flight in a vertical plane over a
flat earth are given by Eqs. (2.8), (2.20), and (2.23), that is,

ẋ = V cos γ

ḣ = V sin γ

V̇ = (g/W )[T cos(α+ ε0) −D −W sin γ]

γ̇ = (g/WV )[T sin(α + ε0) + L−W cos γ]

Ẇ = −CT

(2.24)

2.5. Discussion of 3DOF Equations
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where g and ε0 are constants. The purpose of this discussion is to ex-
amine the system of equations to see if it can be solved. For a fixed
geometry airplane in free flight with flaps up and gear up, it is known
that drag and lift obey functional relations of the form (see Chap. 3)

D = D(h, V, α) , L = L(h, V, α). (2.25)

It is also known that thrust and specific fuel consumption satisfy func-
tional relations of the form (see Chap. 3)

T = T (h, V, P ), C = C(h, V, P ) . (2.26)

In these functional relations, V is the velocity of the airplane relative to
the atmosphere. However, since the atmosphere is fixed relative to the
earth, V is also the velocity of the airplane relative to the earth. The
quantity P is the engine power setting. As a consequence, the equations
of motion (2.24) involve the following variables:

x(t), h(t), V (t), γ(t),W (t), P (t), α(t) . (2.27)

The variables x, h, V, γ and W whose derivatives appear in the equations
of motion are called state variables. The remaining variables α and P

whose derivatives do not appear are called control variables.

Actually, the pilot controls the airplane by moving the throttle
and the control column. When the pilot moves the throttle, the fuel
flow rate to the engine is changed resulting in a change in the rpm of
the engine. The power setting of a jet engine is identified with the
ratio of the actual rpm to the maximum allowable rpm. Hence, while
the pilot actually controls the throttle angle, he can be thought of as
controlling the relative rpm of the engine. Similarly, when the pilot pulls
back on the control column, the elevator rotates upward, and the lift of
the horizontal tail increases in the downward sense. This increment of
lift creates an aerodynamic moment about the center of gravity which
rotates the airplane nose-up, thereby increasing the airplane angle of
attack. Hence, the pilot can be thought of as controlling the angle of
attack of the airplane rather than the angle of the control column. In
conclusion, for the purpose of computing the trajectory of an airplane,
the power setting and the angle of attack are identified as the controls.

The number of mathematical degrees of freedom of a system
of equations is the number of variables minus the number of equations.
The system of equations of motion (2.24) involves seven variables, five
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equations, and two mathematical degrees of freedom. Hence, the time
histories of two variables must be specified before the system can be in-
tegrated. This makes sense because there are two independent controls
available to the pilot. On the other hand, it is not necessary to specify
the control variables, as any two variables or any two relations between
existing variables will do. For example, instead of flying at constant
power setting and constant angle of attack, it might be necessary to fly
at constant altitude and constant velocity. As another example, it might
be desired to fly at constant power setting and constant dynamic pres-
sure q̄ = ρ(h)V 2/2. In all, two additional equations involving existing
variables must be added to complete the system.

In addition to the extra equations, it is necessary to provide
a number of boundary conditions. Since the equations of motion are
first-order differential equations, the integration leads to five constants
of integration. One way to determine these constants is to specify the
values of the state variables at the initial time, which is also prescribed.
Then, to obtain a finite trajectory, it is necessary to give one final condi-
tion. This integration problem is referred to as an initial-value problem.
If some variables are specified at the initial point and some variables are
specified at the final point, the integration problem is called a boundary-
value problem.

In conclusion, if the control action of the pilot or an equivalent
set of relations is prescribed, the trajectory of the aircraft can be found
by integrating the equations of motion subject to the boundary condi-
tions. The trajectory is the set of functions X(t), h(t), V (t), γ(t), W (t),
P (t) and α(t).

In airplane performance, it is often convenient to use lift as a
variable rather than the angle of attack. Hence, if the expression for the
lift (2.25) is solved for the angle of attack and if the angle of attack is
eliminated from the expression for the drag (2.25), it is seen that

α = α(h, V, L), D = D(h, V, L). (2.28)

If these functional relations are used in the equations of motion (2.24),
the lift becomes a control variable in place of the angle attack. It is
also possible to write the engine functional relations in the form P =
P (h, V, T ) and C = C(h, V, T ).

Because the system of Eqs. (2.24) has two mathematical de-
grees of freedom, it is necessary to provide two additional equations
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relating existing variables before the equations can be solved. With this
model, the solution is usually numerical, say by using Runge-Kutta inte-
gration. Another approach is to use the degrees of freedom to optimize
some performance capability of the airplane. An example is to minimize
the time to climb from one altitude to another. The conditions to be
satisfied by an optimal trajectory are derived in Ref. Hu. Optimization
using this model is numerical in nature.

2.6 Quasi-Steady Flight

Strictly speaking, quasi-steady flight is defined by the approximations
that the accelerations V̇ and γ̇ are negligible. However, for the per-
formance problems to be analyzed (climb, cruise, descent) additional
approximations also hold. They are small flight path inclination, small
angle of attack and hence small thrust angle of attack, and small com-
ponent of the thrust normal to the flight path. The four approximations
which define quasi-steady flight are written as follows:

1. V̇ , γ̇ negligible

2. γ2 << 1 or cos γ ∼= 1, sin γ ∼= γ

3. ε2 << 1 or cos ε ∼= 1, sin ε ∼= ε

4. Tε << W

For those segments of an airplane mission where the accelera-
tions are negligible, the equations of motion become

ẋ = V

ḣ = V γ

0 = T −D −Wγ

0 = L−W

Ẇ = −CT.

(2.29)

Note that if the drag is expressed as D = D(h, V, L) the angle of attack
no longer appears in the equations of motion. This means that only the
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drag is needed to represent the aerodynamics. Note also that the approx-
imations do not change the number of mathematical degrees of freedom;
there are still two. However, there are now three states (x, h,W ) and
four controls (V, γ, P, L).

Because two of the equations of motion are algebraic, they can
be solved for two of the controls as

L = W (2.30)

and

γ =
T (h, V, P ) −D(h, V,W )

W
. (2.31)

Then, the differential equations can be rewritten as

dx

dt
= V

dh

dt
= V

[

T (h,V,P )−D(h,V,W )
W

]

dW

dt
= −C(h, V, P )T (h, V, P )

(2.32)

and still have two mathematical degrees of freedom (V,P).

The time is a good variable of integration for finding numerical
solutions of the equations of motion. However, a goal of flight mechanics
is to find analytical solutions. Here, the variable of integration depends
on the problem. For climbing flight from one altitude to another, the
altitude is chosen to be the variable of integration. The states then
become x, t,W . To change the variable of integration in the equations
of motion, the states are written as

x = x(h(t)) , t = t(h(t)) , W = W (h(t)) . (2.33)

Next, these expressions are differentiated with respect to the time as

dx

dt
=
dx

dh

dh

dt
,
dt

dt
=
dt

dh

dh

dt
,
dW

dt
=
dW

dh

dh

dt
(2.34)

and lead to

dx

dh
=
dx/dt

dh/dt
,

dt

dh
=

1

dh/dt
,
dW

dh
=
dW/dt

dh/dt
. (2.35)

Note that the differentials which make up a derivative can be treated as
algebraic quantities.
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The equations of motion (2.32) with altitude as the variable of
integration are given by

dx

dh
= 1

T (h,V,P )−D(h,V,W )
W

dt

dh
= 1

V [T (h,V,P )−D(h,V,W )
W

]

dW

dh
= −

C(h,V,P )T (h,V,P )

V [T (h,V,P )−D(h,V,W )
W

]
.

(2.36)

From this point on all the variables in these equations are considered to
be functions of altitude. There are three states x(h), t(h),W (h) and two
controls P (h), V (h) and still two mathematical degrees of freedom.

time to climb from one altitude to another. Because the amount of fuel
consumed during the climb is around 5% of the initial climb weight, the
weight on the right hand side of Eqs. (2.36) can be assumed constant.
Also, an efficient way to climb is with maximum continuous power set-
ting (constant power setting). The former assumption is an engineering
approximation, while the latter is a statement as to how the airplane is
being flown and reduces the number of degrees of freedom to one. With
these assumptions, the second of Eqs. (2.36) can be integrated to obtain

tf − t0 =
∫

hf

h0

f(h, V ) dh, f(h, V ) =
1

V
[

T (h,V,P )−D(h,V,W )
W

] (2.37)

because P and W are constant.

The problem of finding the function V (h) which minimizes the
time is a problem of the calculus of variations or optimal control theory
(see Chap. 8 of Ref. Hu). However, because of the form of Eq. (2.37),
it is possible to bypass optimization theory and get the optimal V (h) by
simple reasoning.

To find the velocity profile V (h) which minimizes the time to
climb, it is necessary to minimize the integral (2.37) with respect to the
velocity profile V (h). The integral is the area under a curve. The way
to minimize the area under the curve is to minimize f with respect to V
at each value of h. Hence, the conditions to be applied for finding the
minimal velocity profile V (h) are the following:

∂f

∂V

∣

∣

∣

∣

∣

h=Const

= 0,
∂2f

∂V 2

∣

∣

∣

∣

∣

h=Const

> 0. (2.38)

Eqs. (2.36) lead to optimization problems which can be hand-
led quite easily. For example, suppose that it is desired to minimize the
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Substitution of the optimal velocity profile V (h) into Eq. (2.37) leads
to an integral of the form

∫

g(h)dh. If the aerodynamic and propulsion
data are tabular, that is, interpolated tables of numbers, the optimiza-
tion process must be carried out numerically. On the other hand, if
an analytical model is available for the aerodynamics and propulsion, it
may be possible to obtain the optimal velocity profile analytically.

Instead of optimizing the climb, it is possible to specify the
velocity, say constant velocity. Then, the integration in Eq. (2.37) can
be carried out for the time. A question which still remains is what
constant velocity should be flown such that the time takes on a best
value.

In finding the V (h) which minimizes the time, all possible ve-
locity profiles are in contention for the minimum. In finding the constant
velocity which gives the best time, only constant velocity profiles are in
contention. The velocity profile which minimizes the time has a lower
value of the time than the best constant velocity climb.

2.7 Three-Dimensional Flight

In general, the velocity vector is oriented relative to the body axes by
the sideslip angle and the angle of attack. If the velocity vector is in the
plane of symmetry of the airplane, the sideslip angle is zero. Such flight
is called symmetric. For three-dimensional, symmetric flight over a flat
earth, the equations of motion are given by (Ref. Mi1)

ẋ = V cos γ cosψ

ẏ = V cos γ sinψ

ḣ = V sin γ

V̇ = (g/W )[T cos ε−D −W sin γ]

ψ̇ = (g/WV cos γ)(T sin ε+ L) sinµ

γ̇ = (g/WV )[(T sin ε+ L) cosµ−W cos γ]

Ẇ = −CT .

(2.39)

In general (see Fig. 2.4), ψ is called velocity yaw; γ is called velocity

pitch; and µ is called velocity roll. ψ is also called the heading angle, and
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µ is called the bank angle. These angles are shown in Fig. 2.8 for flight
in a horizontal plane.

y

x

h
V

γ

ψ

E

O

Figure 2.4: Three-Dimensional Flight

Note that if ψ = 0, these equations reduce to those for flight
in a vertical plane (2.24), or if γ = 0, they reduce to those for flight in
a horizontal plane (see Prob. 2.9).

Note also that the equations for ḣ and V̇ are the same as those
for flight in a vertical plane. This result will be used in Chap. 7 when
studying energy-maneuverability.

2.8 Flight over a Spherical Earth

The situation for flight in a vertical plane over a nonrotating spherical
earth is shown in Fig. 2.9. Here, rs is the radius of the surface of the
earth, x is a curvilinear coordinate along the surface of the earth, and the
angular velocity of the earth is sufficiently small that it can be neglected
in the analysis of airplane trajectories. The equations of motion are
given by (see Prob. 2.10)

ẋ = rsV cos γ/(rs + h) (2.40)

ḣ = V sin γ (2.41)
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V̇ = (1/m)[T cos ε−D −mg sin γ] (2.42)

γ̇ = (1/mV )[T sin ε+ L−mg cos γ] + V cos γ/(rs + h) (2.43)

ṁ = −CT/g . (2.44)

For a spherical earth, the inverse-square gravitational law is

g = gs

(

rs

rs + h

)2

(2.45)

where gs is the acceleration of gravity at sea level.

To determine the ranges of values of h and V for which the
spherical equations reduce to the flat earth equations, the extra terms

rs

rs + h
,

(

rs

rs + h

)2

,
V cos γ

rs + h
(2.46)

are examined. Use is made of the binomial expansion (Taylor series for
small z):

(1 + z)n ∼= 1 + nz . (2.47)

The second term is more restrictive than the first. It is rewrit-
ten as

(

rs

rs + h

)2

=

(

1 +
h

rs

)

−2

∼= 1 −
2h

rs

(2.48)

and requires that

2
h

rs

<< 1 (2.49)

to obtain the corresponding flat earth term. The third term is compared
with the gravitational term −(g cos γ)/V . The sum of the two terms is
rewritten as

−
g cos γ

V

(

1 −
V 2

gr

)

(2.50)

and with the use of Eq. (2.49) requires that

(

V
√
gsrs

)2

<< 1 (2.51)

to reduce to the flat earth term. Hence, if the approximations

2h

rs

<< 1 (2.52)
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and
(

V
√
gsrs

)2

<< 1, (2.53)

are introduced into the spherical earth equations, they reduce to the
equations of motion for flight over a flat earth. The second approxima-
tion means that the vehicle speed is much less than the satellite speed

at the surface of the earth.

For the remaining analysis, it is assumed that

rs = 20, 900, 000 ft, gs = 32.2 ft/s2. (2.54)

If a mile has 5,280 ft, the radius of the earth is 3,960 mi. Also, the
satellite speed is 25,900 ft/s.

If it is assumed that 0.01 << 1, these inequalities imply that
the upper altitude and velocity values for which the flat earth model is
valid are 105,000 ft and 2,600 ft/s, respectively. Hence, the flat earth
model is very accurate for almost all aircraft. On the other hand, if it is
assumed that 0.1 << 1, the limits become h=1,050,000 ft and V=8,320
ft/s. Note that the height of the atmosphere is only around h=400,000
ft. In this case the flat earth model is valid throughout the atmosphere
up to a Mach number around M = 8.

In closing it is observed that the flat-earth model is really flight
over a spherical earth at airplane altitudes and speeds.

2.9 Flight in a Moving Atmosphere

This section is motivated by such problems as flight in a headwind (tail-
wind), flight of a refueling airplane in the downwash of the tanker, or
flight close to the ground (takeoff or landing) through a microburst
(downburst) which is a downward and outward flow of air below a thun-
derstorm. In the horizontal plane which is not covered here, an example
problem is flight through regions of high and low pressure where the
atmosphere is rotating about the center of the region.

With reference to Fig. 2.5, let Vo denote the velocity of the
airplane relative to the ground axes system (the inertial system). Then,
the kinematic equations of motion are obtained from

dEO

dt
= Vo (2.55)
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and the dynamic equations of motion, from

F = mao = m
dVo

dt
. (2.56)

W

D

L
T

V
w

Vo

γγo

ε

O

Figure 2.5: Flight in a Moving Atmosphere

Before deriving the scalar equations of motion, the velocity of
the airplane relative to the ground (Vo) is written as the vector sum
of the velocity of the airplane relative to the atmosphere (V) and the
velocity of the atmosphere relative to the ground (w), that is,

Vo = V + w. (2.57)

This is done because the drag, the lift, the thrust, and the specific fuel
consumption are functions of the velocity of the airplane relative to the
air. If the velocity of the atmosphere is written as

w = wx(x, h)i − wh(x, h)k, (2.58)

the kinematic equations become

ẋ = V cos γ + wx (2.59)

ḣ = V sin γ + wh. (2.60)

Next, the acceleration can be written as

ao = V̇o = V̇ + ẇ (2.61)
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In the wind axes frame, V = V iw (see Sec. 2.3) so that

V̇ = V̇ iw − V γ̇kw. (2.62)

The acceleration of the atmosphere is obtained from Eq. (2.58) as

ẇ = ẇxi − ẇhk (2.63)

and can be transformed into the wind axes by using the relations

i = cos γiw + sin γkw

k = − sin γiw + cos γkw.
(2.64)

Combining these equations with the force components given in Eq. (2.13)
leads to the dynamic equations of motion (Ref. Mi2)

V̇ = g

W
(T cos ε−D −W sin γ) − (ẇx cos γ + ẇh sin γ)

γ̇ = g

WV
(T sin ε+ L−W cos γ) + 1

V
(ẇx sin γ − ẇh cos γ)

(2.65)

where
ẇx = ∂wx

∂x
(V cos γ + wx) + ∂wx

∂h
(V sin γ + wh)

ẇh = ∂wh

∂x
(V cos γ + wx) + ∂wh

∂h
(V sin γ + wh)

(2.66)

As an example of applying these equations, consider flight into
a constant headwind. Here, if Vw denotes the velocity of the headwind,

wx = −Vw = Const, wh = 0. (2.67)

so that the kinematic equations are given by

ẋ = V cos γ − Vw

ḣ = V sin γ
(2.68)

Note that the headwind only affects the horizontal distance as it should.
Finally, the dynamic equations reduce to Eqs. (2.18).

As another example, consider the flight of a refueling airplane
in the downwash behind the tanker. Here, the wind velocity is given by

wx = 0, wh = −VT ε = Const (2.69)

where VT is the velocity of the tanker and ε is the downwash angle (in the
neighborhood of a couple of degrees). The kinematic equations become

ẋ = V cos γ

ḣ = V sin γ − VT ε.
(2.70)
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In order for the refueling airplane to maintain constant altitude relative
to the ground (ḣ = 0) during refueling, it must establish a small rate of
climb relative to the atmosphere.

In Ref. Mi2, the microburst has been modeled by wx(x) and
wh(x) as shown in Fig. 2.6. Here, wx transitions from a headwind
(wx = −40 ft/s) to a tailwind (wx = 40 ft/s) over a finite distance.
The downwind is constant (wh = −20 ft/s) over the central part of the
downburst. Because there is a change in wind speed with position, there
is windshear. If the pilot does not react quickly to the downburst, the
airplane could lose altitude after the switch from the headwind to the
tailwind and crash.

0  
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Figure 2.6: Approximate Wind Profiles in a Downburst

Problems

ing equations of motion in the wind axes system. Derive the equations

2.1 Derive the equations of motion for constant altitude flight. First,
draw a free body diagram showing an aircraft in constant alti-
tude flight and show all the coordinate systems, angles, and forces.

The first five problems are designed to give the student practice in deriv-

of motion for the particular problem stated using the procedures of Sec-
tions 2.2, 2.3, and 2.4.
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Show that these equations have one mathematical degree of free-
dom and that Eqs. (2.24) reduce to these equations when combined
with h = Const.

2.2 Derive the equations of motion for flight at constant altitude and

ical degrees of freedom. Also, show that Eqs. (2.24) reduce to
these equations when combined with h=Const and V = Const.

2.3 Derive the equations of motion for nonsteady climbing flight at
constant flight path inclination. Show that these equations have
one mathematical degree of freedom. Also, show that Eqs. (2.24)
reduce to these equations when combined with γ=Const.

2.4 Derive the equations of motion for climbing flight at constant flight
path inclination and constant velocity. Show that these equations
have zero mathematical degrees of freedom. Also, show that Eqs.
(2.24) reduce to these equations when combined with γ=Const and
V = Const.

2.5 Derive the equations of motion for an airplane in descending gliding
flight (T=0) in a vertical plane. First, draw a free body diagram
showing an aircraft in gliding flight and all the coordinate systems,
angles, and forces. Here, assume that the velocity vector is at an
angle φ below the horizon and that the aircraft is at a positive angle
of attack α. Show that these equations have one mathematical
degree of freedom and are the same as those obtained from Eqs.
(2.24) with T = 0 and γ = −φ.

2.6 Derive the equations of motion in the local horizon axes system.
In other words, write the velocity vector as

V = uih − wkh,

and note that

V =
√
u2 + w2, tan γ = w/u .

Show that

ẋ = u

ḣ = w

constant velocity. Show that these equations have zero mathemat-
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u̇ =
g

W

[

(T cos ε−D)
u

√
u2 + w2

− (T sin ε+ L)
w

√
u2 + w2

]

ẇ =
g

W

[

(T cos ε−D)
w

√
u2 + w2

+ (T sin ε+ L)
u

√
u2 + w2

−W

]

Ẇ = −CT

where ε = ε0 + α.

a. List the variables and show that there are two mathematical
degrees of freedom.

b. Write
u = V cos γ, w = V sin γ,

and show that the above equations can be manipulated into
the equations of motion in the wind axes system (2.24).

2.7 Derive the equations of motion in the body axes system (see Fig.
2.7) where U,W are the components of the velocity vector on the
body axes, Θ is the angle between the xb axis and the xh axis, called
the pitch angle. Note that mg is used for the weight because W
now denotes a velocity component.

h

x

U

W

V

x b

z b

Θ

mg

E

O

Figure 2.7: Equations of Motion in Body Axes

Write the velocity vector as

V = U ib +Wkb,
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and show that

ẋ = U cos Θ +W sin Θ

ḣ = U sin Θ −W cos Θ

U̇ = −WQ+ (1/m)[T cos ε0 + L sinα−D cosα−mg sin Θ]

Ẇ = UQ− (1/m)[T sin ε0 + L cosα +D sinα−mg cos Θ]

Θ̇ = Q

ṁg = −CT.

where Q is the pitch rate. The velocity and the angle of attack
satisfy the relations

V =
√
U2 +W 2, tanα =

W

U
.

2.8 Show that Eqs. (2.35) for three-dimensional flight over a flat earth
have three mathematical degrees of freedom.

2.9 Consider the constant altitude turning flight (flight in a horizontal
plane) of an airplane as shown in Fig. 2.8 where x, y denote the
cg location in the horizontal plane, ψ is the heading angle, and µ

is the bank angle.

a. Assuming a coordinated turn (no sideslip) so that the velocity,
thrust, lift and drag vectors are in the airplane plane of symmetry,
derive the equations of motion in the ground axes system. Show
that these equations can be combined to form the following equa-
tions of motion for flight in a horizontal plane:

ẋ = V cosψ

ẏ = V sinψ

V̇ = (g/W )[T cos(ε0 + α) −D]

ψ̇ = (g/WV )[T sin(ε0 + α) + L] sinµ

0 = [T sin(ε0 + α) + L] cosµ−W

Ẇ = −CT.

degrees of freedom.
List the variables, and show that there are two mathematical
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Figure 2.8: Nomenclature for Turning Flight

2.10 The purpose of this exercise is to develop the equations of motion
for flight in a great circle plane over a nonrotating spherical earth
(see Fig. 2.9). Actually, the angular velocity of the earth is suf-
ficiently small that it can be neglected in the analysis of vehicle
performance. With reference to the figure, the earth axes system
Exz is fixed to the surface of the earth. The z axis points toward
the center of the earth, and the x axis is curvilinear (x = rsλ) and
along the surface of the earth. Derive the equations of motion,

b. List the variables and show that these equations have two mathe-
matical degrees of freedom.
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Figure 2.9: Nomenclature for Spherical Earth

that is,

ẋ = rsV cos γ/(rs + h)

ḣ = V sin γ

V̇ = (1/m)[T cos ε−D −mg sin γ]

γ̇ = (1/mV )[T sin ε+ L−mg cos γ] + V cos γ/(rs + h)

ṁ = −CT/g

where, for a spherical earth, the inverse-square gravitational law is

g = gs

(

rs

rs + h

)2

.

Note that EO = EQ + QO and that EQ = const.

2.11 Derive the equations of motion in a moving atmosphere in the
body axes system (review Sec. 2.9 and Prob. 2.7). Show that the
equations of motion are

ẋ = U cos Θ +W sin Θ + wx

ḣ = U sin Θ −W cos Θ + wh

U̇ = −WQ+ (1/m)[T cos ε0 + L sinα−D cosα−mg sin Θ]
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−(ẇx cos Θ + ẇh sin Θ)

Ẇ = UQ− (1/m)[T sin ε0 + L cosα +D sinα−mg cos Θ]

−(ẇx sin Θ − ẇh cos Θ)

Θ̇ = Q

ṁg = −CT.

where

V =
√
U2 +W 2, tanα =

W

U
.

Note that U,W are now the components of the velocity vector
relative to the wind.

2.12 A sounding rocket is ascending vertically at zero angle of attack in
the atmosphere over a flat earth (Fig. 2.10). Derive the kinematic

T

V

D

mg

O

E

h

x

Figure 2.10: Sounding Rocket

and dynamic equations of motion. The thrust can be approxi-
mated by the relation T = βc where β is the propellant mass
flow rate (power setting) and c is the equivalent exhaust veloc-

The mass equation is given by ṁ = −β.
If CD = CD(M), how many mathematical degrees of freedom do
the equations of motion have? List the equations, the functional
relations, and the variables.

ity (assumed constant).
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Answer:

ḣ = V

V̇ = (1/m)[βc−D(h, V ) −mg]

ṁ = −β

are zero mathematical degrees of freedom.
matical degree of freedom. If β is constant (constant thrust), there
The variables are h(t), V (t), m(t), β(t), so there is one mathe-



Chapter 3

Atmosphere, Aerodynamics,

and Propulsion

In the previous chapter, functional relations were presented for the aero-
dynamic and propulsion terms appearing in the equations of motion used
for trajectory analysis. It is the intention of this chapter to verify these
relations as well as to present a procedure for estimating the aerody-
namic characteristics of a subsonic jet airplane. Engine data is assumed
to be provided by the manufacturer, so that no estimation of propulsion
terms is attempted.

First, a standard atmosphere is defined and approximated by
an exponential atmosphere. Then, aerodynamics is discussed function-
ally, and an algorithm for estimating the angle of attack and the drag
polar of a subsonic airplane at moderate values of the lift coefficient is
presented. Because the graphs of these quantities have simple geomet-
ric forms, approximate aerodynamic formulas are developed. All of the
aerodynamics figures are for the SBJ of App. A. Finally, data for a
subsonic turbojet and turbofan are presented, and the propulsion terms
are discussed functionally. Because of the behavior of these engines,
approximate formulas can be developed.

3.1 Standard Atmosphere

The real atmosphere is in motion with respect to the earth, and its
properties are a function of position (longitude, latitude, and altitude)
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and time. From an operational point of view, it is necessary to have this
information, at least in the region of operation. However, from a design
point of view, that is, when comparing the performance of two aircraft,
it is only necessary that the atmospheric conditions be characteristic of
the real atmosphere and be the same for the two airplanes. Hence, it is
not important to consider the motion of the atmosphere or to vary its
characteristics with respect to longitude and latitude. A simple model
in which atmospheric properties vary with altitude is sufficient.

There are two basic equations which must be satisfied by air
at rest: the aerostatic equation

dp = −ρg dh (3.1)

and the equation of state for a perfect gas

p = ρRτ (3.2)

where p is the pressure, ρ the density, R the gas constant for air, and
τ the absolute temperature. For the region of the atmosphere where
airplanes normally operate, the acceleration of gravity and the compo-
sition of air can be assumed constant (g = 32.174 ft/s2 and R = 1716.5
ft2/s2 ◦R). To complete the system of equations defining the standard

atmosphere, it is assumed that the temperature is a known function of
the altitude.

Actual measurements of atmospheric properties using balloons
and sounding rockets have shown that the atmosphere can be approx-
imated by a number of layers in which the temperature varies linearly
with the altitude, that is, the temperature gradient β = dτ/dh is con-
stant. The assumed temperature profile for the first three layers of the
1962 U.S. Standard Atmosphere (Ref. An) is shown in Fig. 3.1. Note
that the layer of the atmosphere closest to the earth (0 ≤ h ≤ 36089 ft) is
called the troposphere; the next two layers (36089 ≤ h ≤ 104,990 ft) are
part of the stratosphere; and the dividing line between the troposphere
and the stratosphere is called the tropopause.

Because of the assumed temperature profile, the equations defin-
ing temperature, pressure, and density can be written as

dτ = β dh

dp/p = −(g/R)dh/τ

dρ/ρ = −(g/R + β)dh/τ

(3.3)
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Figure 3.1: Temperature Distribution - 1962 U.S. Standard Atmosphere

where β is a constant for each layer of the atmosphere. For the tropo-

sphere (β = −3.5662E−3 ◦R/ft), these equations can be integrated to
obtain

τ = 518.69 − 3.5662E−3 h

p = 1.1376E−11 τ5.2560

ρ = 6.6277E−15 τ4.2560

(3.4)

where the standard sea level conditions

τs = 518.69 ◦R, ps = 2116.2 lb/ft2
, ρs = 2.3769E−3 slugs/ft3 (3.5)

have been used to evaluate the constants of integration. The initial
conditions for the first layer of the stratosphere are obtained by applying
Eqs. (3.4) at the tropopause (h = 36,089 ft) and are given by

τt = 389.99 ◦R, pt = 472.68 lb/ft2
, ρt = 7.0613E−4 slugs/ft3

. (3.6)

Then, the integration of Eqs. (3.3) with β = 0 ◦R/ft leads to

τ = 389.99

p = 2678.4 exp(−4.8063E−5 h)

ρ = 1.4939E−6 p

(3.7)
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Finally, the initial conditions for the second layer of the stratosphere are
given by

τ+ = 389.99 ◦R, p+ = 114.35 lb/ft2
, ρ+ = 1.7083E−4 slugs/ft3 (3.8)

so that the integration of Eqs. (3.3) with β = 5.4864E−4 ◦R/ft yields

τ = 389.99 + 5.4864E−4 (h − 65, 617)

p = 3.7930E+90 τ−34.164

ρ = 2.2099E+87 τ−35.164

(3.9)

Two other properties of interest are the speed of sound and the
viscosity. If the ratio of specific heats for air is denoted by k (k = 1.4),
the speed of sound is given by

a = (kRτ)1/2 = 49.021τ 1/2. (3.10)

The viscosity is assumed to satisfy Sutherland’s formula

µ =
2.27E−8 τ3/2

τ + 198.6
. (3.11)

Since the absolute temperature is a known function of altitude, speed of
sound and viscosity become functions of altitude.

The end result of this analysis is that the atmospheric proper-
ties satisfy functional relations of the form τ = τ(h), p = p(h), ρ = ρ(h),
a = a(h) and µ = µ(h). Values of these quantities are presented in Table
3.1 for the standard day.

The same quantities can be derived for a nonstandard day by
shifting the temperature profile in Fig. 3.1 to the right or to the left
by the amount ∆τ Then, the equations for the atmosphere must be
rederived.

3.2 Exponential Atmosphere

Outside the first layer of the stratosphere, the formulas for the atmo-
spheric properties given by the standard atmosphere are so complicated
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mathematically (decimal exponents) that their use will not lead to an-
alytical solutions. An approximate atmosphere which may lead to ana-
lytical solutions is the exponential atmosphere or isothermal atmosphere.
Here, the formula for the density is given by

ρ = ρsexp(−h/λ) (3.12)

where ρs is the sea level density and λ is called the scale height. This
form is motivated by the statosphere formulas where the temperature is
constant and exponential is exact. For the troposphere and the constant
temperature part of the stratosphere, a value of λ which gives an error
on the order of 10% is λ= 26,600 ft.

To achieve more accuracy, it is possible to assume that each
layer of the atmosphere satisfies an exponential form. Here,

Table 3.1: Atmospheric Properties versus Altitude

h τ p ρ a µ

ft ◦R lb/ft2 slug/ft3 ft/s lb s/ft2

0. 518.69 2116.1 2.3769E-03 1116.4 3.7385E-07
1000. 515.12 2040.8 2.3081E-03 1112.6 3.7185E-07
2000. 511.56 1967.6 2.2409E-03 1108.7 3.6984E-07
3000. 507.99 1896.6 2.1751E-03 1104.9 3.6783E-07
4000. 504.43 1827.6 2.1109E-03 1101.0 3.6581E-07
5000. 500.86 1760.7 2.0481E-03 1097.1 3.6378E-07
6000. 497.29 1695.8 1.9868E-03 1093.2 3.6174E-07
7000. 493.73 1632.9 1.9268E-03 1089.2 3.5970E-07
8000. 490.16 1571.8 1.8683E-03 1085.3 3.5766E-07
9000. 486.59 1512.7 1.8111E-03 1081.3 3.5560E-07

10000. 483.03 1455.3 1.7553E-03 1077.4 3.5354E-07
11000. 479.46 1399.7 1.7008E-03 1073.4 3.5147E-07
12000. 475.90 1345.8 1.6476E-03 1069.4 3.4939E-07
13000. 472.33 1293.7 1.5957E-03 1065.4 3.4731E-07
14000. 468.76 1243.1 1.5450E-03 1061.4 3.4522E-07
15000. 465.20 1194.2 1.4956E-03 1057.3 3.4312E-07
16000. 461.63 1146.9 1.4474E-03 1053.2 3.4101E-07
17000. 458.06 1101.1 1.4004E-03 1049.2 3.3890E-07
18000. 454.50 1056.8 1.3546E-03 1045.1 3.3678E-07
19000. 450.93 1013.9 1.3100E-03 1041.0 3.3465E-07
20000. 447.37 972.5 1.2664E-03 1036.8 3.3251E-07
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Table 3.1: Atmospheric Properties versus Altitude (cont’d)

h τ p ρ a µ

ft ◦R lb/ft2 slug/ft3 ft/s lb s/ft2

21000. 443.80 932.4 1.2240E-03 1032.7 3.3037E-07
22000. 440.23 893.7 1.1827E-03 1028.5 3.2822E-07
23000. 436.67 856.3 1.1425E-03 1024.4 3.2606E-07
24000. 433.10 820.2 1.1033E-03 1020.2 3.2389E-07
25000. 429.53 785.3 1.0651E-03 1016.0 3.2171E-07
26000. 425.97 751.6 1.0280E-03 1011.7 3.1953E-07
27000. 422.40 719.1 9.9187E-04 1007.5 3.1734E-07
28000. 418.84 687.8 9.5672E-04 1003.2 3.1514E-07
29000. 415.27 657.6 9.2253E-04 999.0 3.1293E-07
30000. 411.70 628.4 8.8928E-04 994.7 3.1071E-07
31000. 408.14 600.6 8.5695E-04 990.3 3.0849E-07
32000. 404.57 573.3 8.2553E-04 986.0 3.0625E-07
33000. 401.01 547.2 7.9501E-04 981.7 3.0401E-07
34000. 397.44 522.1 7.6535E-04 977.3 3.0176E-07
35000. 393.87 497.9 7.3654E-04 972.9 2.9950E-07
36000. 390.31 474.7 7.0858E-04 968.5 2.9723E-07
37000. 389.99 452.4 6.7589E-04 968.1 2.9703E-07
38000. 389.99 431.2 6.4418E-04 968.1 2.9703E-07
39000. 389.99 411.0 6.1395E-04 968.1 2.9703E-07
40000. 389.99 391.7 5.8514E-04 968.1 2.9703E-07
41000. 389.99 373.3 5.5768E-04 968.1 2.9703E-07
42000. 389.89 355.8 5.3151E-04 968.1 2.9703E-07
43000. 389.99 339.1 5.0657E-04 968.1 2.9703E-07
44000. 389.99 323.2 4.8280E-04 968.1 2.9703E-07
45000. 389.99 308.0 4.6014E-04 968.1 2.9703E-07
46000. 389.99 293.6 4.3855E-04 968.1 2.9703E-07
47000. 389.99 279.8 4.1797E-04 968.1 2.9703E-07
48000. 389.99 266.7 3.9835E-04 968.1 2.9703E-07
49000. 389.99 254.1 3.7966E-04 968.1 2.9703E-07
50000. 389.99 242.2 3.6184E-04 968.1 2.9703E-07
51000. 389.99 230.8 3.4486E-04 968.1 2.9703E-07
52000. 389.99 220.0 3.2868E-04 968.1 2.9703E-07
53000. 389.99 209.7 3.1326E-04 968.1 2.9703E-07
54000. 389.99 199.9 2.9856E-04 968.1 2.9703E-07
55000. 389.99 190.5 2.8455E-04 968.1 2.9703E-07
56000. 389.99 181.5 2.7119E-04 968.1 2.9703E-07
57000. 389.99 173.0 2.5847E-04 968.1 2.9703E-07
58000. 389.99 164.9 2.4634E-04 968.1 2.9703E-07
59000. 389.99 157.2 2.3478E-04 968.1 2.9703E-07
60000. 389.99 149.8 2.2376E-04 968.1 2.9703E-07
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Table 3.1: Atmospheric Properties versus Altitude (cont’d)

h τ p ρ a µ

ft ◦R lb/ft2 slug/ft3 ft/s lb s/ft2

61000. 389.99 142.8 2.1326E-04 968.1 2.9703E-07
62000. 389.99 136.1 2.0325E-04 968.1 2.9703E-07
63000. 389.99 129.7 1.9372E-04 968.1 2.9703E-07
64000. 389.99 123.6 1.8463E-04 968.1 2.9703E-07
65000. 389.99 117.8 1.7596E-04 968.1 2.9703E-07
66000. 390.20 112.3 1.6763E-04 968.3 2.9716E-07
67000. 390.75 107.0 1.5955E-04 969.0 2.9751E-07
68000. 391.30 102.0 1.5186E-04 969.7 2.9786E-07
69000. 391.85 97.2 1.4456E-04 970.4 2.9821E-07
70000. 392.39 92.7 1.3762E-04 971.1 2.9856E-07
71000. 392.94 88.4 1.3103E-04 971.7 2.9891E-07
72000. 393.49 84.3 1.2475E-04 972.4 2.9925E-07
73000. 394.04 80.3 1.1879E-04 973.1 2.9960E-07
74000. 394.59 76.6 1.1312E-04 973.8 2.9995E-07
75000. 395.14 73.1 1.0772E-04 974.4 3.0030E-07
76000. 395.69 69.7 1.0259E-04 975.1 3.0065E-07
77000. 396.24 66.5 9.7713E-05 975.8 3.0099E-07
78000. 396.78 63.4 9.3073E-05 976.5 3.0134E-07
79000. 397.33 60.5 8.8658E-05 977.1 3.0169E-07
80000. 397.88 57.7 8.4459E-05 977.8 3.0204E-07

Troposphere ρ = ρsexp[−h/29, 730]

Stratosphere I ρ = ρtexp[−(h − ht)/20, 806]

Stratosphere II ρ = ρ+exp[−(h − h+)/20, 770]

(3.13)

Note that the density for the first stratosphere layer is exact.

In the spirit of an isothermal atmosphere, the speed of sound
can be assumed constant and have the value a = 1000 ft/s. This value is
easy to remember and makes the conversion from Mach number to ft/s
and vice versa simple.

3.3 Aerodynamics: Functional Relations

The resultant aerodynamic force is the integrated effect of the pressure
and skin friction caused by the flow of air over the surface of the airplane.
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The lift and the drag are the components of the resultant aerodynamic
force perpendicular and parallel to the velocity vector. They satisfy the
relations

L =
1

2
CLρSV 2, D =

1

2
CDρSV 2 (3.14)

where CL is the lift coefficient, CD is the drag coefficient, ρ is the density
of the atmosphere at the altitude of the airplane, V is the velocity of the
airplane relative to the atmosphere, and S is the wing planform area.

If the equations governing the motion of air (the continuity
equation, the linear momentum equations, the energy equation, and the
perfect gas equation) and the boundary conditions are nondimensional-
ized, the integration of the pressure and skin friction coefficients over the
surface of the airplane leads to the following functional relations for the
lift coefficient and the drag coefficient for a constant geometry aircraft:

CL = CL(α, M, Re), CD = CD(α, M, Re). (3.15)

In these relations, α is the airplane angle of attack, while the Mach

number and the Reynolds number are defined as

M =
V

a
, Re =

ρV l

µ
. (3.16)

Here, a and µ are the speed of sound and the viscosity of the atmo-
sphere at the altitude of the airplane, and l is a characteristic length of
the airplane. In practice, Reynolds number effects are neglected in the
expression for the lift coefficient so that Eqs. (3.15) can be rewritten as

CL = CL(α, M), CD = CD(α, M, Re). (3.17)

In the calculation of aircraft performance, it is the convention
to use lift coefficient as a variable rather than angle of attack. Hence,
if the CL equation is solved for α and the result is substituted into the
expression for CD , the following relations are obtained:

α = α(CL, M), CD = CD(CL, M, Re). (3.18)

The equation for CD is referred to as the drag polar.

Plots of the angle of attack and drag coefficient are shown in
Fig. 3.2 for the Subsonic Business Jet (SBJ) in App. A. It is interesting
to note that the lift coefficient has a maximum value. Also, the angle of
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Figure 3.2: Angle of Attack and Drag Coefficient (SBJ)

attack is linear in the lift coefficient over a wide range of values of CL,
and the drag coefficient is parabolic over the same interval.

Dimensional expressions for the angle of attack and the drag
can be obtained by combining Eqs. (3.14), (3.16), and (3.18) as

α = α[2L/ρ(h)SV 2, V/a(h)]

2D/ρ(h)SV 2 = CD[2L/ρ(h)SV 2, V/a(h), ρ(h)V /µ(h)]

(3.19)
so that

α = α(h, V, L), D = D(h, V, L). (3.20)

These are the expressions for the angle of attack and the drag used in
Chap. 2 to discuss the solution of the quasi-steady equations of motion.

Plots of the angle of attack and the drag for the SBJ are shown
in Fig. 3.3 for a given lift and several values of the altitude. Note that
at each altitude the angle of attack decreases monotonically with the
velocity and there is a velocity for minimum drag which increases with
altitude.

Another important aerodynamic characteristic of an airplane
is the lift-to-drag ratio or aerodynamic efficiency

E =
L

D
=

CL

CD

. (3.21)

l
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Figure 3.3: Angle of Attack and Drag for the SBJ

In terms of nondimensional variables, the lift-to-drag ratio satisfies the
functional relation

E = E(CL, M, Re) (3.22)

whereas the dimensional functional relation is given by

E = E(h, V, L). (3.23)

Plots are presented in Fig. 3.4 for the SBJ, where it is seen that the
lift-to-drag ratio has a maximum with respect to the lift coefficient and
with respect to the velocity. Since E = L/D and the lift is held constant,
the velocity for maximum lift-to-drag ratio is identical with the velocity
for minimum drag.

3.4 Aerodynamics: Prediction

This section presents an algorithm for calculating the aerodynamic char-
acteristics of a subsonic jet airplane. The two quantities of interest are

L, M)and the drag polar CD= CD(CL, M, Re).

3.5 Angle of Attack

The lift of an airplane is the lift of the wing-body combination plus
the lift of the horizontal tail. The lift of a wing-body combination is a

the angle of attack α = α(C
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complicated affair in that the body produces some lift and interference
effects between the wing and the body increase the lift of the body. It has
been observed that the lift of a wing-body combination can be replaced
by the lift of the entire wing (including that portion which passes through
the fuselage). The lift of the horizontal tail is neglected with respect to
that of the wing. Hence, the lift of the airplane is approximated by
the lift of the entire wing. Geometrically, the wing is defined by its
planform shape, its airfoil shapes along the span, and the shape of its
chord surface. The only wings considered here are those with a straight-
tapered planform shape, the same airfoil shape along the span, and a
planar chord surface (no bend or twist). If a wing does not meet these
conditions, it can be replaced by an average wing that does. For example,
if the airfoil has a higher thickness ratio at the root than it does at the
tip, an average thickness can be used. The aerodynamic characteristics
of airfoils and wings have been taken from Refs. AD and Ho.

Over the range of lift coefficients where aircraft normally op-
erate, the lift coefficient of the wing can be assumed to be linear in the
angle of attack (see Fig. 3.2), that is,

CL = CLα
(α − α0L) (3.24)

where α0L is the zero-lift angle of attack and CLα
is the lift-curve slope
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of the wing. This equation can be solved for α as

α = α0L(M) +
CL

CLα
(M)

. (3.25)

Hence, to obtain α, it is necessary to determine α0L and CLα
. First,

airfoils are discussed, then wings, then airplanes.

3.5.1 Airfoils

An airfoil is the cross-sectional shape of a two-dimensional wing (infinite
span). The geometry of a cambered airfoil is defined by the geometries of
the basic symmetric airfoil and the camber line shown in Fig. 3.5 where t

is the maximum thickness and c is the chord. The basic symmetric airfoil

Basic
Symmetric
Airfoil

Camber 
Line

Cambered
Airfoil

y

y

y

x

x

x

c

y = yc (x)

y = yt (x)

t

t

Figure 3.5: Airfoil Geometric Characteristics

shape y = yt(x) involves a number of parameters which are related to
such geometric quantities as leading edge radius, trailing edge angle,
thickness ratio (t/c), location of maximum thickness, etc. The camber
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line shape y = yc(x) involves parameters which are related to chord,
leading edge slope, maximum displacement of the camber line from the
chord and its location, etc. The basic symmetric airfoil and the camber
line are combined to form the cambered airfoil.

An airfoil at an angle of attack α experiences a resultant aero-
dynamic force, and the point on the chord through which the line of
action passes is called the center of pressure (Fig. 3.6). The resultant
aerodynamic force is resolved into components parallel and perpendicu-
lar to the velocity vector called the drag and the lift.

α

V

ca

cl

cd
α0

Chord line

Zero-lift line

Center of pressure

-

Figure 3.6: Center of Pressure

In general, the lift coefficient and the drag coefficient behave
as

cl = cl(α, M) , cd = cd(α, M, Re) (3.26)

where M is the Mach number and Re is the Reynolds number. With
lift coefficient as a variable instead of the angle of attack, these relations
become

α = α(cl, M) , cd = cd(cl, M, Re). (3.27)

By holding M and Re constant and varying the lift coefficient, the above
quantities vary as in Fig. 3.7 for a cambered airfoil. Here, α0 is the
zero-lift angle of attack, clα is the lift-curve slope, and cli

is the ideal lift
coefficient or the lift coefficient where the drag coefficient is a minimum.
From this figure, it is seen that the angle of attack varies linearly with
the lift coefficient and the drag coefficient varies quadratically with cl

over a wide range of cl.

A systematic study of airfoil aerodynamics has been conducted
by NACA. Aerodynamic data has been collected for various sets of thick-
ness distributions and camber lines and are designated as NACA X-digit
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Figure 3.7: Airfoil Aerodynamic Characteristics - M , Re given

series. The data are usually presented for M = 0.2, Re = 9 × 106, and
means for making Mach number and Reynolds number corrections are
available. Collections of airfoil data can be found in Refs. AD and Ho.

Values of α0 and clα for an NACA 64-109 airfoil are presented
in Table 3.2 along with how they vary with the Mach number. While
the numbers are presented in terms of degrees, all of the formulas use
the numbers in radians. Each of the numbers in the designation 64-
109 means something. The 6 denotes a 6-series airfoil which indicates a
particular geometry for the thickness distribution and the camber line.
The 4 means that the peak suction (minimum pressure) occurs at xps/c =
0.4; the 1 means that the ideal lift coefficient (lift coefficient for minimum
drag coefficient) is cli

= 0.1; and the 09 means that the thickness ratio

is t/c = 0.09.

Table 3.2: Data for the NACA 64-109 Airfoil

Parameter M = 0.2 Variation with

(M=0) Mach number

α0 -0.5 deg Negligible

clα 0.110 deg−1 clα =
(clα

)M=0
√

1−M2
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3.5.2 Wings and horizontal tails

For a straight-tapered wing or horizontal tail, the basic geometric prop-
erties of half the wing (Fig. 3.8), which is a trapezoid, are the root chord

cr, the tip chord ct, the semi-span b/2, and the sweep of the quarter-
chord line (m=.25). Note that m = 0 is the leading edge, and m = 1 is
the trailing edge. Given values for these quantities, derived quantities

m c(y)

y

x

b / 2

ct

Λm

Λle

cr

Figure 3.8: Geometry of a Straight, Tapered Wing

for the whole wing such as planform area S, aspect ratio A, taper ratio

λ, sweep Λn of the n chord line nc(y), and mean aerodynamic chord can
be obtained from the following relations:

S = 2( b

2
)( cr+ct

2
)

A = b2

S

λ = ct

cr

tanΛn = tanΛm −
4
A
(n − m)1−λ

1+λ

c̄ = 2cr

3
1+λ+λ2

1+λ
.

(3.28)

The mean aerodynamic chord is the chord of the equivalent rectangular
wing. It has the same lift and the same pitching moment about the
y-axis as the original wing.
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For such a wing, α is defined as the angle of attack of the root
airfoil which here is the same as the angle of attack of the wing chord
plane. Assuming that the lift coefficient is linear in the angle of attack
(Fig. 3.9), two important parameters are the zero-lift angle of attack α0L

CL α

CL

α0L α

M  given

Figure 3.9: Lift Coefficient versus Angle of Attack

and the lift-curve slope CLα
. For the assumed wing, the zero-lift angle

of attack of the wing equals the zero-lift angle of attack of the airfoil,
that is,

α0L = α0. (3.29)

An accepted formula for the lift-curve slope of a swept wing is the fol-
lowing:

CLα
=

πA

1 +
√

1 + (A/2κ)2[1 + tan2 Λhc − M2]
(3.30)

where Λhc is the half-chord sweep angle and where

κ =
(clα)M=0

(clα)theory

. (clα)theory = 6.28 + 4.7(t/c) (3.31)

is the ratio of the airfoil lift-curve slope to the theoretical value. From
Table 3.2, it is seen that κ = .94 for the NACA 64-109. It is close to
unity, as it is for most airfoils.

3.5.3 Airplanes

The angle of attack of an entire airplane is the angle between the xb axis
and the velocity vector (see Fig. 3.10). It is recalled that the xb axis
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Figure 3.10: Airplane Angle of Attack

passes through the airplane center of gravity, and its orientation relative
to the airplane depends on the type of airplane. For a passenger airplane,
the xb axis is usually parallel to the cabin floor. The wing is attached to
the fuselage at an incidence iW , the angle between the wing chord plane

and the xb axis. For the wing to produce zero lift, the airplane must be
at the zero-lift angle of attack

−α0L = iW − α0LW
= iW − α0 (3.32)

which is independent of the Mach number. Since all of the lift of the
airplane has been assumed to be produced by the wing, the airplane
lift-curve slope is given by Eq. (3.30).

The quantities α0L and CLα
, which are needed to determine

the angle of attack (3.25), have been computed for the SBJ (App. A)
and are presented in Fig. 3.11.

3.6 Drag Coefficient

The subsonic flow field over an airplane consists of a thin viscous bound-
ary layer close to the surface of the airplane, an inviscid flow region out-
side the boundary layer whose pressure distribution at the outside of the
boundary layer is transmitted through the boundary layer to the surface
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Figure 3.11: Zero-Lift Angle of Attack and Lift-Curve Slope (SBJ)

of the airplane, and if the speed is high enough embedded shock waves.
Hence, to estimate the drag polar, the drag coefficient is divided into
the friction drag coefficient, the wave drag coefficient, and the induced

drag coefficient, that is,

CD = CDf
(M, Re) + CDw

(CL, M) + CDi
(CL). (3.33)

3.6.1 Friction drag coefficient

The friction drag coefficient is computed using the equivalent parasite

area method. It is written as

CDf
=

f

S
(3.34)

where f is the total equivalent parasite area and S is the wing plan-
form area. The former is the sum of the equivalent parasite area of
each airplane component multiplied by 1.1 to account for miscellaneous
contributions. Hence,

CDf
=

1.1

S

∑

fk (3.35)

The equivalent parasite area is computed from the relation

fk = Cfk
CFk IFk FFk Swetk

(3.36)
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where each term is defined below.

The average skin friction coefficient Cfk
is computed from the

equation for the skin friction coefficient for turbulent flow over a flat
plate, that is,

Cfk
=

0.455

(log10Rek
)2.58

(3.37)

where the freestream Reynolds number is given by

Rek
=

ρV lk

µ
(3.38)

The reference length lk of each component is defined in Table 3.3, where
l denotes a body length and c̄ denotes a mean aerodynamic chord.

The compressibility factor CFk modifies the skin friction coef-
ficient to account for Mach number effects and is given by

CFk = (1.0 + 0.2M2)−0.467 (3.39)

The interference factor IFk accounts for interference effects
between two components, and representative values are tabulated in
Table 3.3.

The form factor FFk accounts for thickness effects. Formulas
for its calculation are given by

FFW = 1.0 + 1.6(t/c)W + 100(t/c)4
W

FFH = 1.0 + 1.6(t/c)H + 100(t/c)4
H

FFV = 1.0 + 1.6(t/c)V + 100(t/c)4
V

FFB = 1.0 + 60/(l/d)3
B

+ 0.0025(l/d)B

FFT = 1.0 + 60/(l/d)3
T

+ 0.0025(l/d)T

FFN = 1.0 + 0.35/(l/d)N

(3.40)

where t/c is the airfoil thickness ratio (maximum thickness divided by
chord) and l/d is the body fineness ratio (length divided by maximum
diameter).
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Table 3.3: Reference Lengths and Interference Factors

Airplane Reference Interference

Component k Length Factor

Body B lB 1.20

Wing W c̄W 1.20

Horizontal Tail H c̄H 1.10

Vertical Tail V c̄V 1.10

Wing Nacelles N lN 1.30

Body Nacelles N lN 1.50

Tip Tanks T lT 1.25

Finally, the wetted area Swetk
is the external surface area of

the airplane touched by the air and is computed using simple geometric
shapes. Lifting surfaces can be assumed to be flat plates; bodies can
be made up of cones and cylinders; and nacelles can be represented by
open-ended cylinders.

The total equivalent parasite area is the sum of the component
equivalent parasite areas plus ten percent of this total to account for
miscellaneous contributions.

3.6.2 Wave drag coefficient

The rapid increase in the drag coefficient due to the formation of shock
waves at high speeds is called wave drag. Shock waves cause the bound-
ary layer to separate, thus increasing the drag. Wave drag begins at the
Mach number for drag divergence which is shown in Fig. 3.12. Because
a subsonic airplane will not fly above MD because the drag is too high,
an approximate formula is used to represent the wave drag coefficient
and is given by

CDw
= 29.2(M − MD)3 , M ≥ MD (3.41)

where the drag divergence Mach number MD is computed from the wing
and airfoil geometry as follows:

MD = g1 − g2CL (3.42)
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Figure 3.12: Mach Number for Drag Divergence

The quantities g1 and g2 are defined in terms of wing and airfoil prop-
erties as

g1 = [1 + 0.189(4Λps − 3Λmt)][1 − 1.4(t/c)W

−0.06(1 − xps/c)] − 0.0368

g2 = 0.33(0.65 − xps/c)[1 + 0.189(4Λps − 3Λmt)]

(3.43)

where xmt/c is the chordwise location of the airfoil maximum thickness,
Λmt is the sweep of the maximum thickness line, xps/c is the airfoil peak
suction location, and Λps is the sweep of the peak suction line. The
wave drag coefficient is included only if the free-stream Mach number
is greater than the drag divergence Mach number. If it is less than the
drag divergence Mach number, then the wave drag coefficient is equal to
zero.

3.6.3 Induced drag coefficient

Induced drag is caused by the rotational flow about the tip vortices. It is
called vortex drag, drag due to lift, or induced drag. The corresponding
drag coefficient is given by

CDi
=

C2
L

πAW e(1 + 0.5dT/bW )
. (3.44)
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The induced drag of the horizontal tail is neglected. The wing tip tank
diameter dT accounts for the tendency of tip tanks to reduce the induced
drag because of an end plate effect. Oswald’s efficiency factor e accounts
for the difference between an elliptical planform and the straight-tapered
planform. It is estimated from the statistical equation

e = (1 − 0.045A0.68
W )(1 − 0.227Λ1.615

qcW
). (3.45)

3.6.4 Drag polar

In general, the drag polar has the form

CD = CD(CL, M, Re). (3.46)

The drag polar of the SBJ is shown in Fig. 3.13 where R′

e

∆
= ρV/µ is the

Reynolds number per ft. Values of CD are shown for R′

e
= 1.0×106 and

several values of the Mach number. It is seen that for M ≤ .8 the Mach
number has little effect on the drag polar. In Fig. 3.14 the effect of R′

e

on CD is shown for M ≤ 0.8. For CL = 0.3, the values of CD are .0253,
.0265, and .0287. The change in CD relative to the middle value is 5%
in one direction and 8% in the other. Hence, the change in the Reynolds
number has only a small effect on the value of CD. If the Reynolds
number which is selected for the computation is around the lowest value
expected to be experienced in flight, the drag coefficient will be on the
conservative side (slightly higher). The value R′

e = 1.0 × 106 is used for
the subsequent calculations. Hence, if the effects of Reynolds number
changes are neglected, the functional relation for the drag coefficient
becomes

CD = CD(CL, M). (3.47)

It should be mentioned that drag polars can be created for take-off,
climb, cruise, and landing by changing the value of the Reynolds number
which is used to compute the polar.

3.7 Parabolic Drag Polar

As stated previously, the angle of attack can be assumed to be linear in
the lift coefficient over a wide range of values of CL, but not near the
maximum. This relationship is given by Eq. (3.25). Over the same range
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Figure 3.13: Drag Polar for the SBJ, Re given
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Figure 3.14: Drag Polar for the SBJ, M given
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of CL, the drag coefficient can be assumed to be a parabolic function

L

flight.

for another)
CD = CD0(M) + K(M)C2

L (3.48)

where CD0 is the zero-lift drag coefficient, KC2
L

is the induced drag coef-

ficient, and K is the induced drag factor. To obtain the parabolic drag
polar for a given Mach number, the actual polar is fit by the parabola
(3.48) using least squares and forcing the parabola to pass through the
point where CL = 0.

Thus, the equations for CD0 and K are given by

CD0 = (CD)CL=0, K =
n

∑

k=1

(CDk
− CD0)C

2
Lk

/
n

∑

k=1

C4
Lk

(3.49)

where n is the number of points being fit. On the other hand, if M <

MD,

CD0 = CDf

K = 1
πAW e(1+0.5dT /bW )

.

(3.50)

For the parabolic drag polar, the lift-to-drag ratio is given by

E =
CL

CD0 + KC2
L

. (3.51)

For a given Mach number (CD0 and K constant), E has a maximum
when the lift coefficient has the value

C∗

L
=

√

CD0

K
. (3.52)

The maximum lift-to-drag ratio then given by

E∗ =
1

2
√

CD0K
. (3.53)

The quantities CD0, K, C∗

L
and E∗ have been computed for the

SBJ (App. A) with a R′

e
= 1.0 × 106 ft−1. The curves are presented in

of the lift coefficient. The lift coefficient range for which these approxi-

One form of the parabolic drag polar is given by (see Prob. 3.6

mations are valid includes the values of C normally experienced in
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Figure 3.15: CD0 and K for the SBJ
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Figs. 3.15 and 3.16, and the values are given in Table 3.4. It is observed
from these figures that CD0 , K, C∗

L
, and E∗ are nearly constant for Mach

numbers in the range 0 < M < .8. This range of Mach numbers defines
the flow regime known as subsonic flow. In the neighborhood of M =
.8, shock waves begin to form in the flow field around the airplane, and
the aerodynamic parameters undergo large changes. This flow regime is
called transonic flow.

Table 3.4: Parabolic Drag Polar Data (SBJ)

M CD0 K CL∗ E∗

0.0 0.0231 0.073 0.563 12.18

0.1 0.0231 0.073 0.562 12.19

0.2 0.0230 0.073 0.561 12.21

0.3 0.0229 0.073 0.560 12.23

0.4 0.0228 0.073 0.559 12.26

0.5 0.0226 0.073 0.556 12.31

0.6 0.0224 0.073 0.554 12.37

0.7 0.0223 0.073 0.552 12.41

0.750 0.0222 0.073 0.551 12.43

0.775 0.0221 0.074 0.547 12.36

0.800 0.0221 0.078 0.532 12.04

0.825 0.0218 0.089 0.495 11.36

0.850 0.0224 0.109 0.452 10.12

0.875 0.0255 0.147 0.416 8.173

0.9 0.0336 0.185 0.426 6.345

If CD0 and K are assumed constant (parabolic drag polar with
constant coefficients), Eq. (3.48) combined with Eqs. (3.14) leads to the
following dimensional expression for the drag:

D =
1

2
CD0ρSV 2 +

2KL2

ρSV 2
. (3.54)

Note that D = D(h, V, L). If L = W and if the altitude and the weight
are given, the drag has a minimum with respect to the velocity when

V =

√

√

√

√

2W

ρS

√

K

CD0

=

√

2W

ρSC∗

L

∆
= V ∗. (3.55)
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At this velocity, the drag has the minimum value

D∗ = 2
√

CD0K W =
W

E∗

. (3.56)

For a given altitude and lift, minimizing the drag is equivalent to maxi-
mizing the lift-to-drag ratio. This explains why the velocity for minimum
drag equals the velocity for maximum lift-to-drag ratio.

3.8 Propulsion: Thrust and SFC

In this section, the propulsion characteristics appearing in the equations
of motion, thrust and specific fuel consumption (SFC), are discussed
functionally for two subsonic airbreathing jet engines, a turbojet and a
turbofan. Next, approximate expressions are presented for the thrust
and specific fuel consumption. The point of view taken here is that
engine data is available from the engine manufacturer so that no formulas
are presented for estimating these quantities.

3.8.1 Functional relations

One manner of presenting engine data is in terms of corrected thrust and
corrected specific fuel consumption, that is,

Tc = T

δ

Cc = C
√

θ

(3.57)

where the dimension of thrust is lb and that of specific fuel consumption
is l/hr. The pressure ratio δ and temperature ratio θ are defined as

δ = p̄

ps

θ = τ̄

τs

(3.58)

where the sea level static pressure ps is 2116.2 lb/ft2 and the sea level
static temperature τs is 518.69 ◦R. The total pressure p̄ and total tem-
perature τ̄ for isentropic flow of air (ratio of specific heats = 1.4) can be
expressed as

p̄ = p(1 + 0.2M2)3.5

τ̄ = τ(1 + 0.2M2)
(3.59)
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Engine manufacturer’s data (see Fig. 3.17 for a turbojet or Fig. 3.18 for
a turbofan) shows that the corrected thrust and specific fuel consumption
satisfy functional relations of the form

Tc = Tc(M, η), Cc = Cc(M, η). (3.60)

The corrected engine speed η is related to the power setting P = N/Nmax,
where N is the engine rpm, as follows:

η = Pηmax. (3.61)

For a turbojet, the value of ηmax is given by

ηmax = min(1.05, 1.0/
√

θ) (3.62)

For the turbofan, the value of ηmax is

ηmax =







(1, 958 + 47h/5, 000)/τ̄ , h ≤ 5, 000 ft

2, 005/τ̄ , h > 5, 000 ft
(3.63)

With regard to the power setting, the following are accepted definitions:

P = 1.00, take−off thrust

P = 0.98, maximum continuous thrust
(3.64)

By combining Eqs. (3.57) through (3.63), it is seen that the
thrust and specific fuel consumption satisfy functional relations of the
form

T = T (h, V, P ), C = C(h, V, P ) (3.65)

These are the functional relations used earlier to discuss the equations
of motion.

Fig. 3.17 shows the corrected thrust and the corrected specific
fuel consumption for a turbojet. The numbers for these figures are given
in Table 3.6. Note that the maximum sea level static thrust (h=0, M=0,
ηmax = 1) is around 3,000 lb. Fig. 3.18 gives the corrected thrust and
the corrected specific fuel consumption for a turbofan. The numbers for
these figures are given in Table 3.6. The maximum sea level static thrust
(h=0, M=0. ηmax=3.8) is around 4,000.
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Figure 3.17: Corrected Thrust and SFC: GE CJ610-6 Turbojet

Table 3.5: Turbojet Engine Data

η = .85 η = .90 η = .95 η = 1.00 η = 1.05

M Tc Cc Tc Cc Tc Cc Tc Cc Tc Cc

0.0 1,353 1.009 1853 .9601 2,488 0.954 3022 .9954 3,390 1.080

0.1 1,245 1.071 1740 1.004 2,365 0.993 2871 1.041 3,248 1.119

0.2 1,138 1.146 1626 1.054 2,242 1.037 2720 1.092 3,105 1.163

0.3 1,042 1.216 1551 1.094 2.160 1.065 2635 1.117 3.033 1.187

0.4 945 1.302 1475 1.139 2,078 1.095 2550 1.143 2,960 1.213

0.5 867 1.369 1420 1.160 2,026 1.111 2490 1.166 2,885 1.237

0.6 789 1.449 1365 1.184 1,974 1.127 2430 1.189 2,810 1.262

0.7 742 1.484 1337 1.190 1,947 1.129 2392 1.199 2,768 1.276

0.8 695 1.524 1309 1.196 1,921 1.130 2355 1.208 2,725 1.290

0.9 647 1.569 1281 1.203 1,894 1.132 2318 1.218 2,683 1.305
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Table 3.6: Turbofan Engine Data

η = 2.5 η = 3.0 η = 3.5 η = 4.0 η = 4.5

M Tc Cc Tc Cc Tc Cc Tc Cc Tc Cc

0.0 427 0.598 1,260 0.520 2,618 0.501 3,962 0.516 4,929 0.553

0.1 333 0.808 1,050 0.637 2,373 0.553 3,651 0.560 4,583 0.595

0.2 253 1.123 945 0.721 2,182 0.602 3,379 0.605 4,274 0.638

0.3 172 1.735 840 0.827 1,992 0.660 3,018 0.657 3,966 0.688

0.4 164 1.909 786 0.900 1,884 0.699 2,934 0.696 3,731 0.731

0.5 156 2.095 736 0.980 1,765 0.747 2,753 0.742 3,514 0.776

0.6 149 2.291 690 1.065 1,635 0.807 2,566 0.797 3,315 0.823

0.7 145 2.445 643 1.163 1,546 0.855 2,449 0.834 3,182 0.857

0.8 142 2.607 596 1.277 1,457 0.909 2,333 0.876 3,047 0.895

0.9 138 2.778 550 1.409 1,367 0.969 2,218 0.922 2,914 0.936

Figure 3.18: Corrected Thrust and SFC: Garrett TFE 731-2 Turbofan
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3.8.2 Approximate formulas

Approximate formulas have been proposed for thrust and specific fuel
consumption, that is,

T = Tt(V, P )(ρ/ρt)
a, C = Ct(V, P )(ρ/ρt)

b (3.66)

where the subscript t denotes the tropopause. The main features of
these formulas are that they are exact in the constant temperature part
of the stratosphere (a = 1, b = 0) and that they are extended down into
the troposphere by putting an arbitrary exponent on the density ratio.
These formulas are more valid near the tropopause than they are near
sea level.

The fitting of Eqs. (3.66) to engine data in the troposphere
has been carried out for the GE turbojet. The quantities Tt(V, P ) and
Ct(V, P ) are obtained from the data of Fig. 3.17 at the tropopause and
are presented in Fig. 3.19. Next, Eqs. (3.66) are solved for a and b and
plotted in Fig. 3.20. The values of a and b are taken from these figures
to be a = 1.2 and b = 0.1.

In the interest of developing analytical performance results, it
is observed from Fig. 3.19 that Tt can be assumed to be independent
of the Mach number and that Ct can be assumed to be independent of
both the Mach number and the power setting. Hence, the Tt and Ct in
the above approximations can be rewritten as

Tt = Tt(P ), Ct = Const. (3.67)

Values of Tt(P ) and Ct are given in Table 3.7.

Table 3.7: Tropopause Thrust and SFC - Turbojet

P Tt(P ) Ct

lb hr−1

.83 285 1.18

.88 450 1.18

.93 600 1.18

.98 710 1.18
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Figure 3.19: Tropopause Thrust and SFC: GE CJ610-6 Turbojet
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Figure 3.20: Thrust and SFC Exponents: GE CJ610-6 Turbojet
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The fitting of Eqs. (3.66) to engine data in the troposphere has
also been carried out for the Garrett turbofan. The quantities Tt(V, P )
and Ct(V, P ) are obtained from the data of Fig. 3.18 at the tropopause
and are presented in Fig. 3.21. Next, Eqs. (3.66) are solved for a and
b and plotted in Fig. 3.22. The values of a and b are taken from these
figures to be a = 1.0 and b = 0.0. Note that they are the same as the
statosphere values.

In the interest of developing analytical performance results, it
is observed from Figs. 3.21 that Tt can be assumed to be independent
of the Mach number and that Ct can be assumed to be independent of
both the Mach number and the power setting. Hence, the Tt and Ct in
the above approximations can be rewritten as Eqs. (3.67). Values of
Tt(P ) and Ct are given in Table 3.8.

Table 3.8: Tropopause Thrust and SFC - Turbofan

P Tt(P ) Ct

lb hr−1

.83 973 .725

.88 1067 .725

.93 1095 .725

.98 1112 .725

3.9 Ideal Subsonic Airplane

The Ideal Subsonic Airplane (ISA) is defined as an airplane that has a
parabolic drag polar with constant coefficients, a thrust independent of
the velocity, and a specific fuel consumption independent of the velocity
and the power setting. Hence, the drag is given by

D =
1

2
CD0ρSV 2 +

2KL2

ρSV 2
(3.68)

and the thrust and specific fuel consumption satisfy the relations

T = Tt(P )(ρ/ρt)
a, C = Ct(ρ/ρt)

b. (3.69)
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Figure 3.21: Tropopause Thrust and SFC: Garrett TFE 731-2 Turbofan
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Figure 3.22: Thrust and SFC Exponents: Garrett TFE 731-2 Turbofan
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Note that D, T, and C satisfy the functional relations

D = D(h, V, L) , T = T (h, P ) , C = C(h). (3.70)

The aerodynamics of the Ideal SBJ (ISBJ, App. A) are given
by

CD0 = 0.023, K = 0.073. (3.71)

The propulsion characteristics of the GE turbojet are given by

Troposphere : a = 1.2, b = 0.1 (3.72)

Stratosphere : a = 1, b = 0, (3.73)

with Tt(P ) and Ct given in Table 3.7.

The propulsion characteristics of the Garrett turbofan are given
by

Troposphere : a = 1, b = 0 (3.74)

Stratosphere : a = 1, b = 0, (3.75)

with Tt(P ) and Ct given in Table 3.8. It is not possible to just replace
the GE turbojet in the ISBJ by the Garrett turbofan. Each turbofan
engine weighs about 300 lb more than the turbojet.

Problems

The answers to the problems involving the computation of the SBJ ge-
ometry or aerodynamics are given in App. A to help keep you on track.
Once you have completed an assignment, you should use the numbers
given in App. A instead of those you have calculated.

3.1 Perform the tasks listed below for the wing of the SBJ (App. A).
The wing planform extends from the fuselage centerline to the
outside of the tip tanks.

Starting from the measured values for the root chord, the tip chord,
the span, and the sweep angle of the quarter chord line (App. A)
calculate the planform area, the aspect ratio, the taper ratio, and
the sweep of the leading edge. Also, calculate the length of the
mean aerodynamic chord.
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3.2 To demonstrate that Eq. (3.30) reduces to known incompressible
thin-wing results, show that, for M = 0, Λhc = 0, and κ = 1,

CLα
=

πA

1 +
√

1 + (A/2)2
.

Then, for large aspect ratio wings [(A/2)2 >> 1], show that

CLα
=

2πA

2 + A
.

Finally, for a two-dimensional wing (airfoil) for which A = ∞,
show that

CLα
= 2π

which is the theoretical thin-airfoil result.

3.3 Prove that the surface area of a right circular cone (excluding the
base) is given by

A = πR
√

R2 + h2

where R denotes the base radius and h denotes the height.

3.4 Calculate the wetted area of each component of the SBJ (App. A).

3.5 Assume that the SBJ (App. A) is operating in level flight (L = W)
at h = 30,000 ft, M = 0.7, and W = 11,000 lb. The lift coefficient
is given by CL = 2W/ρSV 2.

a. Compute the Mach number for drag divergence.

b. Calculate CD0 and K for this flight condition. In doing this
calculation, remember that there are two nacelles and two tip
tanks.

3.6 Another form of the parabolic drag polar is given by

CD = CDm
(M) + Km(M)[CL − CLm

(M)]2

where CDm
, CLm

define the minimum drag point. If the Mach
number is given, find the lift coefficient for maximum lift-to-drag
ratio and the maximum lift-to-drag ratio for this polar.



Chapter 4

Cruise and Climb of an

Arbitrary Airplane

In the mission segments known as cruise and climb, the accelerations
of airplanes such as jet transports and business jets are relatively small.
Hence, these performance problems can be studied by neglecting the tan-
gential acceleration V̇ and the normal acceleration V γ̇ in the equations
of motion. Broadly, this chapter is concerned with methods for obtain-
ing the distance and time in cruise and the distance, time, and fuel in
climb for an arbitrary airplane. What is meant by an arbitrary airplane
is that cruise and climb performance is discussed in terms of the func-
tional relations D(h, V, L), T (h, V, P ), and C(h, V, P ). These functional
relations can represent a subsonic airplane powered by turbojet engines,
a supersonic airplane powered by turbofan engines, and so on. In order
to compute the cruise and climb performance of a particular airplane,
the functional relations are replaced by computer functions which give
the aerodynamic and propulsion characteristics of the airplane.

In Chap. 5, the theory of this chapter is applied to an Ideal
SBJ. There, approximate analytical formulas are used for the aerody-
namics and propulsion. Analytical solutions are obtained for the dis-
tance and time in cruise and the distance, time, and fuel in climb.

The airplane is a controllable dynamical system which means
that the equations of motion contain more variables than equations, that
is, one or more mathematical degrees of freedom (MDOF). In standard
performance problems, the MDOF are reduced to one, and it is associ-
ated with the velocity profile flown by the airplane during a particular
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mission leg. Then, the performance of an airplane can be computed for
a particular velocity profile, or trajectory optimization can be used to
find the optimal velocity profile. This is done by solving for the distance,
time, and fuel in terms of the unknown velocity profile. After selecting
distance, time or fuel as the performance index, optimization theory is
used to find the corresponding optimal velocity profile. An example is
to find the velocity profile which maximizes the distance in cruise from
one weight to another, that is, for a given amount of fuel. Besides be-
ing important all by themselves, optimal trajectories provide yardsticks
by which arbitrary trajectories (for example, constant velocity) can be
evaluated.

This chapter begins with a discussion of how flight speeds are
represented and what some limitations on flight speed are.

4.1 Special Flight Speeds

In presenting the performance characteristics of an aiplane, several quan-
tities can be used to represent the velocity. The velocity of the airplane
relative to the atmosphere, V , is called the true airspeed. If σ denotes
the ratio of the atmospheric density at the altitude the airplane is op-
erating, ρ, to that at sea level, ρs, the equivalent airspeed is defined as
Ve =

√
σV . Note that the equivalent airspeed is proportional to the

square root of the dynamic pressure q̄ = ρV 2/2. This airspeed is im-
portant for low-speed flight because it can be measured mechanically.
The air data system measures the dynamic pressure and displays it to
the pilot as indicated airspeed. The indicated airspeed is the equivalent
airspeed corrupted by measurement and instrument errors. To display
the true airspeed to the pilot requires the measurement of static pres-
sure, dynamic pressure, and static temperature. Then, the true airspeed
must be calculated. For high-speed flight, it has become conventional to
use Mach number as an indication of flight speed. High-speed airplanes
have a combined airspeed indicator and Mach meter.

In this chapter, the performance of a subsonic business jet (the
SBJ of App. A) is computed to illustrate the procedures and results.
Because this airplane operates in both low-speed and high-speed regimes,
the true airspeed is used to present performance. Note that true airspeed
can be roughly converted to Mach number by using a = 1,000 ft/s. Other
conversion formulas are useful. If a statute mile has 5,280 ft, 1 mi/hr =
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1.4667 ft/s. If a nautical mile has 6,076 ft, 1 kt = 1.6878 ft/s. A kt is
one nautical mile per hour.

4.2 Flight Limitations

The lowest speed at which an airplane can maintain steady level flight
(constant altitude) is called the stall speed. In steady level flight, the
equation of motion normal to the flight path is given by

L = W (4.1)

where the component of the thrust has been neglected. Because of the
definition of lift coefficient, this equation can be written as

1

2
CLρSWV 2 = W (4.2)

and says that for a given weight the product CLV 2 is constant. Hence,
the lower the speed of the airplane is the higher the lift coefficient must
be. Since there is a maximum lift coefficient, there is a minimum speed
at which an airplane can be flown in steady level flight. This speed is
called the stall speed and is given by

Vstall =

√

2W

ρSW CLmax

. (4.3)

Some airplanes are speed limited by their structure or control
capability. This limit can take the form of a maximum dynamic pressure,
so that

Vq̄max
=

√

2q̄max

ρ
(4.4)

by definition of dynamic pressure. This limit can affect the best climb
speed of the airplane as well as the maximum speed.

At high speeds, some airplanes may have a maximum operating
Mach number. Hence, by definition of Mach number, the limiting speed
is

VMmax
= Mmaxa (4.5)

While this speed decreases with altitude in the troposphere, it is constant
in the constant temperature part of the stratosphere.

Note that the stall speed and the maximum dynamic pressure
speed are actually constant equivalent airspeeds.
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4.3 Trajectory Optimization

An important part of airplane performance is the optimization of tra-
jectories. These problems can be solved by a branch of mathematics
called Calculus of Variations, which in recent times is also called Optimal
Control Theory. A simple problem which occurs frequently in airplane
trajectory optimization is to find the curve y(x) which maximizes the
performance index

J =
∫

xf

x0

f(x, y) dx (4.6)

where x0 and xf are the initial and final values of the variable of inte-
gration. It is known that the curve y(x) which maximizes the integral
(4.6) satisfies the conditions

∂f

∂y

∣

∣

∣

∣

∣

x=Const

= 0,
∂2f

∂y2

∣

∣

∣

∣

∣

x=Const

< 0. (4.7)

The first condition gives the curve y(x) which optimizes the integral,
and the second condition identifies it as a maximum. For a minimum,
< 0 is replaced by > 0. It is possible to verify the nature (maximum
or minimum) of the optimal curve by looking at a plot of the function
f(x, y) versus y for several values of x.

Because of the simple form of Eq. (4.6), it is easy to verify
Eq. (4.7). The integral is the area under the integrand. To maximize
the integral, it is necessary to maximize the area. At each value of the
variable of integration, the area is maximized by maximizing F with
respect to y. The conditions for doing this are Eqs. (4.7).

4.4 Calculations

In this chapter, example calculations are made for the cruise and climb
performance of the Subsonic Business Jet (SBJ) in App. A. The airplane
is assumed to be operating in a constant gravity standard atmosphere,
to have a parabolic drag polar CD = CD0(M) + K(M)C2

L
, and to be

powered by two GE CJ610-6 turbojets. In the calculation of atmospheric
properties, drag, thrust, and specific fuel consumption, it is assumed that
the altitude h, the velocity V , the weight W , and the power setting P

are known. The calculations have been done on MATLAB, and three
functions are needed.
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The first function contains the standard atmosphere equations
of Sec. 3.1. Given h, the function returns the atmospheric properties,
particularly density ρ(h) and speed of sound a(h).

The second function computes the drag. With M = V/a(h),
Table 3.4 is interpolated for CD0(M) and K(M). Then, the lift co-
efficient is obtained from CL = 2W/ρ(h)SV 2, since L = W , and the
drag coefficient is computed from the parabolic drag polar. The drag is
obtained from D = (1/2)CDρ(h)SV 2.

The third function calculates the thrust and specific fuel con-
sumption of the turbojet. First, the corrected engine speed η is deter-
mined from Eq. (3.61). Then, the corrected thrust and the corrected spe-
cific fuel consumption are obtained from Table 3.5 by a two-dimensional
interpolation in terms of M and η. Finally, T and C are computed using
the formulas at the beginning of Sec. 3.8.1.

In conclusion, given h, V, W, and P , it is possible to calculate
ρ(h), a(h), D(h, V, W ), T (h, V, P ), and C(h, V, P )

4.5 Flight Envelope

By definition, the flight envelope is the region of the velocity-altitude
plane where the airplane can maintain steady level flight. The dynamic
equations of motion for steady level flight (V̇ = γ̇ = γ = 0) are obtained
from Eq. (2.29) as

T (h, V, P ) − D(h, V, L) = 0

L − W = 0
(4.8)

Then, since L = W ,

T (h, V, P ) − D(h, V, W ) = 0. (4.9)

If the altitude, weight, and power setting are given, this equation can be
solved for the velocity.

In Fig. 4.1, the thrust and the drag are sketched versus the
velocity. For a subsonic airplane, the drag has a single minimum whose
value does not change with the altitude (see for example Fig. 3.3).
Also, for a subsonic jet engine, the thrust does not vary greatly with
the velocity, but it does change with the altitude, decreasing as the
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altitude increases. Fig. 4.1 shows that for some altitude, there exist two
solutions of Eq. (4.9), a low-speed solution and a high-speed solution.
As the altitude decreases (thrust increases), there is some altitude where
the low-speed solution is the stall speed and at lower altitudes ceases to
exist. As the altitude increases (thrust decreases), there is an altitude
where there is only one solution, and above that altitude there are no
solutions. The region of the velocity-altitude plane that contains all of
the level flight solutions combined with whatever speed restrictions are
imposed on the airplane, is called the flight envelope.

D

T

h, W, P  given

V

Stall

V1 V2

Figure 4.1: Thrust and Drag versus Velocity

The flight envelope has been computed for the SBJ weighing
11,000 lb and operating at maximum continuous thrust (P=0.98). It is
shown in Fig. 4.2. The level flight solutions for this weight and power
setting are indicated by T − D = 0. The stall speed (CLmax

= 1.24),
the maximum dynamic pressure (q̄max= 300 lb/ft2), and the maximum
Mach number (Mmax=0.81) limits are also plotted versus the altitude.
The region enclosed by these curves is the flight envelope of the SBJ.
The highest altitude at which the airplane can be flown in steady level
flight is called the ceiling and is around 50,000 ft. Note that the highest
speed at which the airplane can be flown is limited by the maximum
dynamic pressure or the maximum Mach number.

Next to be discussed are the distance and time during cruise.
These quantities have been called the range and endurance. However, be-
cause there is considerable distance and time associated with the climb,
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the range, for example, could be defined as the sum of the distance in
climb and the distance in cruise.

0                200              400             600               800            1000
V (ft/s)
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Figure 4.2: Flight Envelope of the SBJ

4.6 Quasi-steady Cruise

Of major importance in the mission profile is the cruise segment because
airplanes are designed to carry a given payload a given distance. For a
constant altitude cruise, the velocity vector is parallel to the ground, so
that the equations of motion for quasi-steady level flight are given by
Eqs. (2.29) with γ = 0, that is,

ẋ = V (4.10)

0 = T (h, V, P ) − D(h, V, L) (4.11)

0 = L − W (4.12)

Ẇ = −C(h, V, P )T (h, V, P ). (4.13)

During a cruise, the altitude is constant and is not counted as a variable.
Hence, these equations have two states, x(t) and W (t), three controls,
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V (t), P (t), and L(t), for a total of five variables. Since there are four
equations, this system of equations has one mathematical degree of free-
dom, which is associated with the velocity profile V (t).

The general procedure followed in studying quasi-steady air-
plane performance is to solve the equations of motion for each of the
variables in terms of the unknown velocity profile. Then, given a veloc-
ity profile, the distance and the time for a given fuel can be determined.
Since there are an infinite number of velocity profiles, it is desirable
to find the one which optimizes some performance index. For cruise,
there are two possible performance indices: distance (range) or time
(endurance). Hence, the optimization problem is to find the velocity
profile which maximizes the distance or the velocity profile which max-
imizes the time. This process is called trajectory optimization.

4.7 Distance and Time

To compute the distance and the time for a given amount of fuel (W0

given, Wf given), Eqs. (4.11) and (4.12) require that L = W and that

T (h, V, P ) − D(h, V, W ) = 0 (4.14)

This equation can be solved for the power setting as

P = P (h, V, W ) . (4.15)

Next, the weight is made the variable of integration, and Eqs. (4.10)
and (4.13) are rewritten as

−
dx

dW
= V

C(h,V,P )T (h,V,P )

−
dt

dW
= 1

C(h,V,P )T (h,V,P )

(4.16)

where all variables are now considered as functions of W . Then, Eq.
(4.15) is used to eliminate the power setting so that

−
dx

dW
= V

C(h,V,P (h,V,W ))T (h,V,P (h,V,W ))

∆
= F (W, V, h)

−
dt

dW
= 1

C(h,V,P (h,V,W ))T (h,V,P (h,V,W ))

∆
= G(W, V, h)

(4.17)

where F and G are called the distance factor and the time factor. Since
the altitude is constant and V = V (W ), the integration can be performed
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in principle to obtain x(W ) and t(W ) as follows:

x − x0 =
∫

W0

W

F (W, V, h)dW (4.18)

t − t0 =
∫

W0

W

G(W, V, h)dW . (4.19)

Finally, if these equations are evaluated at the final weight, expressions
for the cruise distance and cruise time result, that is,

xf − x0 =
∫

W0

Wf

F (W, V, h)dW (4.20)

tf − t0 =
∫

W0

Wf

G(W, V, h)dW . (4.21)

For each velocity profile V (W ), there exists a distance and a
time. Once a velocity profile has been selected, the distance and the
time for a given amount of fuel can be obtained. In general, the weight
interval W0 − Wf is divided into n subintervals, and the integrals are
rewritten as

xf − x0 =
∑

n

k=1

∫

Wk+1

Wk

F (W, V, h)dW

tf − t0 =
∑

n

k=1

∫

Wk+1

Wk

G(W, V, h)dW

(4.22)

where
W1 = Wf , Wn+1 = W0. (4.23)

Then, the distance factor and the time factor are assumed to vary linearly
with the weight over each subinterval, that is,

F = Fk + Fk+1−Fk

Wk+1−Wk

(W − Wk)

G = Gk + Gk+1−Gk

Wk+1−Wk

(W − Wk)
(4.24)

so that Eqs. (4.22) can be integrated analytically to obtain

xf − x0 =
n

∑

k=1

1

2
(Fk+1 + Fk)(Wk+1 − Wk) (4.25)

tf − t0 =
n

∑

k=1

1

2
(Gk+1 + Gk)(Wk+1 − Wk). (4.26)
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In general, the number of intervals which must be used to get a reason-
ably accurate solution is small, sometimes just one.

While the distance and time can be computed for different
velocity profiles such as constant velocity or constant lift coefficient, it is
important for design purposes to find the maximum distance trajectory
and the maximum time trajectory.

4.8 Cruise Point Performance for the SBJ

The analysis of the distance factor F and the time factor G is called point

performance because only points of a trajectory are considered. For a
fixed altitude, this can be done by plotting F and G versus velocity for
several values of the weight. Regardless of the weight interval [W0, Wf ]
that is being used to compute distance and time, F and G can be com-
puted for all values of W at which the airplane might operate. The use
of F and G to compute the distance and time for a given velocity profile
V (W ) and a given weight interval [W0, Wf ] is called path performance,
because a whole path is being investigated.

Point performance for the SBJ begins with the solution of Eq.
(4.14) for the power setting P (h, V, W ) using Newton’s method. It is
shown in Fig. 4.3 for h = 35.000 ft. Note that the power setting is
around 0.90. Then, P is substituted into Eqs. (4.17) to get the distance
factor F (W, V, h) and the time factor G(W, V, h). Values of F and G

have been computed for many values of the velocity (1 ft/s intervals)
and for several values of the weight. These quantities are plotted in
Figs. 4.4 and 4.5.

It is observed from Fig. 4.4 that the distance factor has a
maximum with respect to the velocity for each value of the weight. This
maximum has been found from the data used to compute F . At each
weight, the velocity that gives the highest value of F is assumed to rep-
resent the maximum. Values of V (W ), Fmax(W ), and the corresponding
values of G(W ) are listed in Table 4.1 and plotted in Figs. 4.6 and 4.7.
Note that V and Fmax(W ) are nearly linear in W .

It is observed from Fig. 4.5 that the time factor has a maximum
with respect to the velocity for each value of the weight. This maximum
has been found from the data used to compute G. At each weight, the
velocity that gives the highest value of GF is assumed to represent the
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Figure 4.3: Power Setting (SBJ)
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Figure 4.4: Distance Factor (SBJ)
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Figure 4.5: Time Factor (SBJ)

maximum. Values of V (W ), Gmax(W ), and the corresponding values of
F (W ) are listed in Table 4.1 and plotted in Figs. 4.6 and 4.7. Note that
V and Gmax(W ) are nearly linear in W .

Note that the velocity for maximum distance factor is roughly
35% higher than the velocity for maximum time factor.

4.9 Optimal Cruise Trajectories

At this point, there are two approaches which can be followed. One is
to specify a velocity profile, say for example V = Const, and compute
the distance and time for a given W0 and Wf . The other is to find the
velocity profile V (W ) that optimizes the distance or that optimizes the
time. Because distance factor has a maximum, the optimal distance
trajectory is a maximum. Similarly, because the time factor has a max-
imum, the optimal time trajectory is a maximum.. Optimal trajectories
are considered first because they provide a yardstick with which other
trajectories can be measured.
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Table 4.1 SBJ Optimal Cruise Point Performance

h = 35,000 ft

Maximum Distance Maximum Time
W V Fmax G V Gmax F

lb ft/s mi/lb hr/lb ft/s hr/lb mi/lb
9,000 604 .442 1.073E-3 416 1.386E-3 .374
9,500 602 .434 1.058E-3 427 1.262E-3 .367
10,000 605 .424 1.031E-3 439 1.210E-3 .362
10,500 618 .415 .985E-3 456 1.161E-3 .361
11,000 631 .406 .943E-3 466 1.110E-3 .353
11,500 645 .398 .905E-3 477 1.064E-3 .345
12,000 658 .390 .870E-3 487 1.021E-3 .338
12,500 671 .383 .837E-3 496 .981E-3 .332
13,000 683 .376 .807E-3 506 .944E-3 .326
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Figure 4.6: Optimal Velocity Profiles (SBJ)

4.9.1 Maximum distance cruise

The velocity profile V (W ) for maximizing the distance (4.20) is obtained
by maximizing the distance factor with respect to the velocity for each
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Figure 4.7: Maximum Distance and Time Factors (SBJ)

value of the weight (see Sec. 4.3). This velocity profile is then used
to compute the maximum distance factor which is used to compute the
maximum distance and to compute the time factor which is used to
compute the time along the maximum distance trajectory.

This process has been carried out for the SBJ at h=35,000
ft with W0 = 12,000 lb and Wf = 10,000 lb (W0 − Wf = 2,000 lb of
fuel). The values of Fmax and G shown in Table 4.1 are used to compute
the maximum distance and the corresponding time from Eqs. (4.25)
and (4.26). As an example, to compute the maximum distance and the
corresponding time for h = 35,000 ft, W0 = 12,000 lb, and Wf =10,000
lb (2000 lb of fuel) using 5,000 lb weight intervals (n = 4), the values
to be used in Eqs. (4.25) and (4.26) are listed in Table 4.2. Then, Eq.
(4.25) gives the maximum distance of 813 mi (see Table 4.3). Similarly,
the time along the maximum distance trajectory is obtained from Eq.
(4.26) as 1.90 hr. This computation has also been made for one interval
(n = 1), and the results agree well with those of n = 4. This happens
because Fmax (Fig. 4.5) and G are nearly linear in W .
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Table 4.2 Maximum Distance Cruise

h = 35,000 ft, W0 = 12,000 lb, Wf = 10,000 lb

k Wk Fmax,k Gk

(lb) (mi/lb) (hr/lb)
1 10,000 .424 .001031
2 10,500 .415 .000985
3 11,000 .406 .000943
4 11,500 .398 .000905
5 12,000 .390 .000870

Table 4.3: SBJ Optimal Cruise Path Performance

h = 35,000 ft, W0 = 12,000 lb, Wf = 10,000 lb

4 Intervals 1 Interval
Maximum Distance (mi) 813 814
Distance Time (hr) 1.90 1.90
Maximum Distance (mi) 704 700

Time Time (hr) 2.20 2.23

To actually fly the maximum distance velocity profile, it is nec-
essary to know the weight as a function of time. If it is not available,
the optimal path can only be approximated. Other velocity profiles are
possible: constant lift coefficient, constant velocity, constant power set-
ting, etc. The importance of the optimal profile is that the usefulness of
the other profiles can be evaluated. For example, if a particular velocity
profile is easy to fly and it gives a distance within a few percent of the
maximum distance, it could be used instead. It can be shown that the
maximum distance is almost independent of the velocity profile V (W ).

4.9.2 Maximum time cruise

The velocity profile V (W ) for maximizing the time (4.21) is obtained by
maximizing the time factor with respect to the velocity for each value of
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the weight (see Sec. 4.3). This velocity profile is then used to compute
the maximum time factor which is used to compute the maximum time
and to compute the distance factor which is used to compute the distance
along the maximum time trajectory.

This process has been carried out for the SBJ with h = 35,000
ft, W0 =12,000 lb, and Wf = 10,000 lb (W0−Wf = 2,000 lb of fuel). The
optimal velocity profile V (W ), the maximum time factor Gmax(W ), and
the distance factor F (W ) are shown in Table 4.1. Then, the maximum
time and the corresponding distance are obtained from Eqs. (4.25) and
(4.26). For the maximum time of the SBJ, the maximum time has
been found by using four intervals to be 2.20 hr and the distance is 704
mi (Table 4.3). These results have also been obtained using only one
interval (700 mi and 2.23 hr). The agreement between the results using
one interval and the results obtained by using four intervals is very good.

4.10 Constant Velocity Cruise

In this section an example of arbitrarily specifying the velocity profile
is presented. The maximum distance path requires that the velocity
change as the weight changes (Table 4.1). Since there is no weight meter
on an airplane, the pilot cannot fly this trajectory very well. At constant
altitude, the indicated airspeed is proportional to the airspeed. Hence,
the pilot can fly a constant velocity trajectory fairly well even though
the controls must be adjusted to maintain constant velocity.

To obtain the distance for a particular velocity, the values of
the distance factor F for that velocity for several values of the weight are
used with Eq. (4.25). Similarly, the time along a constant velocity path
is obtained by using the values of the time factor G for that velocity for
several values of the weight and by using Eq. (4.26).

= 35,000 ft from W0 = 12,000 lb to Wf = 10,000 lb (2,000 lb of fuel).
The results are shown in Table 4.4 for several values of the velocity
used for the cruise. With regard to the distance, note that there is a
cruise velocity for which the distance has a best value. This speed can
be calculated by computer or by curve fitting a parabola to the three
points containing the best distance. The curve fit leads to V = 634 ft/s
and xf − x0 = 812 mi. This value of the distance is almost the same

This process has been carried out for the SBJ operating at h
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as the maximum distance xf − x0 = 813 mi. Hence, the airplane can
be flown at constant velocity and not lose much distance relative to the
maximum. It is emphasized that this conclusion could not have been
reached without having the maximum distance path. As an aside, it is
probably true that the airplane can be flown with any velocity profile
(for example, constant power setting) and get close to the maximum
distance.

A similar analysis with similar results can be carried out for
the time.

Note that the term maximum distance is applied to the case
where all possible velocity profiles are in contention for the maximum.
On the other hand the term best distance is used for the case where
the class of paths in contention for the maximum is restricted, that is,
constant velocity paths. The maximum distance should be better than
or at most equal to the best distance.

Table 4.4 Constant Velocity Cruise

h = 35,000 ft, W0 = 12,000 lb, Wf = 10,000 lb

V Distance Time V Distance Time
(ft/s) (mi) (hr) (ft/s) (mi) (hr)
350 461 1.93 600 809 1.98
400 582 2.13 650 812 1.83
450 680 2.22 700 801 1.68
500 750 2.20 750 781 1.53
550 791 2.11 800 749 1.37

4.11 Quasi-steady Climb

The equations of motion for quasi-steady climbing flight are given by
Eqs. (2.29), that is,

ẋ = V (4.27)

ḣ = V γ (4.28)

0 = T (h, V, P ) − D(h, V, L) − Wγ (4.29)
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0 = L − W (4.30)

Ẇ = −C(h, V, P )T (h, V, P ) (4.31)

This system of five equations has seven variables, x(t), h(t), W (t), V (t),
γ(t), P (t), and L(t). Hence, it has two mathematical degrees of freedom.
Since it is easy to solve for L and γ, the degrees of freedom are associated
with V and P . Experience shows that it is best to climb at maximum
continuous thrust so the power setting is held constant leaving one degree
of freedom, the velocity.

During the climb, an aircraft consumes around 5% of its weight
in fuel. Hence, it is possible to assume that the weight of the aircraft is
constant on the right-hand sides of the equations of motion. Then, the
integration of the weight equation gives an estimate of the fuel consumed
during the climb.

Since L = W , Eq. (4.28) can be solved for the flight path
inclination or climb angle as

γ =
T (h, V, P ) − D(h, V, W )

W
. (4.32)

Two other important quantities are the rate of climb

ḣ = V γ =

[

T (h, V, P ) − D(h, V, W )

W

]

V (4.33)

and the fuel factor

H = −
dh

dW
= −

ḣ

Ẇ
=

[T (h,V,P )−D(h,V,W )]V
W

C(h, V, P )T (h, V, P )
. (4.34)

In order to be able to solve for the distance, the time, and the
fuel in climbing from one altitude to another, the altitude is made the
variable of integration. The differential equations of motion become the
following:

dx

dh
= 1

γ(h,V,P,W )

dt

dh
= 1

ḣ(h,V,P,W )

−
dW

dh
= 1

H(h,V,P,W )
,

(4.35)
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where all variables are now functions of h. Since P and W are constant
and V = V (h), the integration can be performed to obtain x(h), t(h),
and W (h):

x − x0 =
∫

h

h0

1

γ(h, V, P, W )
dh (4.36)

t − t0 =
∫

h

h0

1

ḣ(h, V, P, W )
dh (4.37)

W0 − W =
∫

h

h0

1

H(h, V, P, W )
dh . (4.38)

Finally, if these equations are evaluated at the final altitude, the follow-
ing expressions result for the distance, the time, and the fuel :

xf − x0 =
∫

hf

h0

1

γ(h, V, P, W )
dh (4.39)

tf − t0 =
∫

hf

h0

1

ḣ(h, V, P, W )
dh (4.40)

W0 − Wf =
∫

hf

h0

1

H(h, V, P, W )
dh. (4.41)

Hence, there are three possible optimal trajectories: minimum distance,
minimum time, or minimum fuel.

Once the velocity profile is known, the distance, the time, and
the fuel can be obtained by approximate integration. Here, the altitude
interval h0, hf is divided into n subintervals, that is,

xf − x0 =
∑

n

k=1

∫ hk+1

hk
dh/γ

tf − t0 =
∑

n

k=1

∫ hk+1

hk
dh/ḣ

W0 − Wf =
∑

n

k=1

∫ hk+1

hk
dh/H

(4.42)

where h1 = h0 and hn+1 = hf . Next, it is assumed that the climb angle,
the rate of climb, and the fuel factor vary linearly with the altitude over
each altitude interval as follows:

γ = γk + (∆γ/∆h)(h − hk)

ḣ = ḣk + (∆ḣ/∆h)(h − hk)

H = Hk + (∆H/∆h)(h − hk)

(4.43)
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where
∆( ) = ( )k+1 − ( )k. (4.44)

If Eqs. (4.43) are substituted into Eqs. (4.42) and the integrations are
performed, the following approximate expressions are obtained for the
distance, the time, and the fuel consumed during the climb:

xf − x0 =
∑

n

k=1(∆h/∆γ) ln(γk+1/γk)

tf − t0 =
∑

n

k=1(∆h/∆ḣ) ln(ḣk+1/ḣk)

W0 − Wf =
∑

n

k=1(∆h/∆H) ln(Hk+1/Hk) .

(4.45)

4.12 Climb Point Performance for the SBJ

Climb point performance involves the study of the flight path angle γ,
the rate of climb ḣ and the fuel factor H as defined in Eqs. (4.32)
through (4.34). Values of these quantities have been computed for many
values of the velocity (1 ft/s intervals) and several values of the altitude
for W =11,000 lb and P = 0.98.

The flight path angle is presented in Fig. 4.8. Note that the
maximum γ occurs at sea level and is around 22 deg. As the altitude
increases the maximum γ reduces to zero at the ceiling. At each altitude,
the maximum γ is determined by finding the velocity (computed at 1 ft/s
intervals) that gives the highest value of γ . This value of the velocity
is used to compute the rate of climb and the fuel factor. Then, V (h),
γmax(h), ḣ(h), and H(h) are listed for several values of h in Table 4.5
and plotted in Figs. 4.11 and 4.12.

The rate of climb is shown in Fig. 4.9. Note that the maximum
ḣ occurs at sea level and is around 150 ft/s (9,000 ft/min). As the
altitude increases the maximum ḣ reduces to zero at the ceiling. At
each altitude, the maximum ḣ is determined by finding the velocity that
gives the highest value of ḣ which is computed at 1 ft/s intervals. This
value of the velocity is used to compute the flight path angle and the
fuel factor. Then, V (h), γ(h), ḣmax(h), and H(h) are listed for several
values of h in Table 4.6 and plotted in Figs. 4.11 and 4.12.

Because it is not possible to fly at the airplane ceiling, several
other ceilings have been defined. The service ceiling is the altitude at
which the maximum rate of climb is 100 ft/min. The cruise ceiling is
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Figure 4.8: Climb Angle (SBJ)

Table 4.5 SBJ Optimal Climb Point Performance: γ

W=11,000 lb, P=.98

Maximum γ

h V γmax ḣ H

ft ft/s deg ft/s ft/lb
0 252 22.0 96.9 63.4

5,000 275 18.8 90.3 66.6
10,000 303 15.8 83.7 70.0
15,000 334 13.1 76.2 72.7
20,000 394 10.1 69.4 79.0
25,000 442 7.40 57.1 79.5
30,000 490 5.17 44.2 75.7
35,000 546 3.34 31.8 66.7
40,000 647 1.90 21.5 52.6
45,000 726 0.82 10.4 29.7
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Figure 4.9: Rate of Climb (SBJ)

Table 4.6 SBJ Optimal Climb Point Performance: ḣ

W=11,000 lb, P=.98

Maximum ḣ

h V γ ḣmax
H

ft ft/s deg ft/s ft/lb
0 515 16.8 151. 96.8

5,000 547 14.2 136. 96.5
10,000 562 12.3 120. 96.0
15,000 583 10.4 105. 94.7
20,000 599 8.63 90.2 92.4
25,000 701 6.09 74.5 84.9
30,000 734 4.27 54.7 75.9
35,000 730 2.95 37.6 66.5
40,000 745 1.79 23.3 51.6
45,000 745 0.81 10.9 20.8
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the altitude where the maximum rate of climb is 300 ft/min. The combat

ceiling is the altitude where the maximum rate of climb is 500 ft/min.

The fuel factor is presented in Fig. 4.10. Note that the max-
imum H occurs at sea level and is around 100 ft/lb. As the altitude
increases the maximum H reduces to zero at the ceiling. At each alti-
tude, the maximum H is determined by finding the velocity (computed
at 1 ft/s intervals) that gives the highest value of γ . This value of the
velocity is used to compute the rate of climb and the fuel factor. Then,
V (h), γ(h), ḣ(h), and Hmax(h) are listed for several values of h in Table
4.7 and plotted in Figs. 4.11 and 4.12.

4.13 Optimal Climb Trajectories

There are three possible performance indices for computing optimal
climb trajectories: distance, time, or fuel. Because γ, ḣ, and H each
have a maximum, the distance, time and fuel trajectories each have a
minimum.

4.13.1 Minimum distance climb

The velocity profile for minimizing the distance (4.39) is obtained by
maximizing the climb angle with respect to the velocity at each value
of the altitude (Sec. 4.3). This velocity profile is used to compute the
maximum climb angle, the rate of climb, and the fuel factor which are
used to compute the minimum distance and the time and fuel along the
minimum distance trajectory. This process has been carried out for the
SBJ climbing from sea level to h = 35,000 ft with W = 11,000 lb and
P = 0.98. The optimal velocity profile V (h), the maximum climb angle
γ(h), the rate of climb ḣ(h) and the fuel factor H(h) shown in Table 4.5
are used to compute the minimum distance and the time and fuel along
the minimum distance trajectory from Eqs. (4.45). These quantities
have been found by using four intervals to be 42.2 mi, 9.22 min, and
484. lb respectively (Table 4.8). Note that the fuel is around 4% of the
climb weight, justifying the approximation of weight constant on the
right-hand sides of the climb equations of motion.
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Figure 4.10: Fuel Factor (SBJ)

Table 4.7 SBJ Optimal Climb Point Performance: H

W=11,000 lb, P=.98

Maximum H

h V γ ḣ Hmax

ft ft/s deg ft/s ft/lb
0 512 16.9 151. 96.8.

5,000 529 14.7 136. 96.7.
10,000 539 12.8 120. 96.3
15,000 553 10.9 105. 95.1
20,000 565 9.10 89.7 93.0
25,000 583 6.89 70.1 88.4
30,000 614 4.86 52.1 80.8
35,000 636 3.24 35.9 69.7
40,000 684 1.89 22.5 53.1
45,000 737 0.82 10.5 29.8
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Figure 4.11: Optimal Velocity Profiles (SBJ)
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These results have also been obtained using only one interval.
The agreement between n = 1 and n = 4 is very good in γ and ḣ because
they are nearly linear in h. The error in H is around 10%.

4.13.2 Minimum time climb

The velocity profile for minimizing the time (4.40) is obtained by max-
imizing the rate of climb with respect to the velocity at each value of
the altitude (Sec. 4.3). This velocity profile is used to compute the
climb angle, the maximum rate of climb, and the fuel factor which are
used to compute the minimum time and the distance and fuel along the
minimum time trajectory.

This process has been carried out for the SBJ climbing from
sea level to h = 35,000 ft with W = 11,000 lb and P = 0.98. The optimal
velocity profile V (h), the climb angle γ(h), the maximum rate of climb
ḣ(h) and the fuel factor H(h) shown in Table 4.6 are used to compute the
distance, the time, and the fuel along the minimum time trajectory from
Eqs. (4.45). These quantities have been found by using four intervals to
be 51.4 mi, 6.97 min, and 399 lb respectively (Table 4.8). Note that the
fuel is less than 4% of the climb weight, justifying the approximation of
weight constant on the right-hand sides of the climb equations of motion.

These results have also been obtained using only one interval.
The agreement between n = 1 and n = 4 is very good in γ and ḣ because
they are nearly linear in h. The error in H is less than 10%.

4.13.3 Minimum fuel climb

The velocity profile for minimizing the distance (4.41) is obtained by
maximizing the fuel factor with respect to the velocity at each value of
the altitude (Sec. 4.3). This velocity profile is used to compute the climb
angle, the rate of climb, and the fuel factor which are used to compute
the minimum fuel and the distance and time along the minimum fuel
trajectory.

This process has been carried out for the SBJ climbing from
sea level to h = 35,000 ft with W = 11,000 lb and P = 0.98. The optimal
velocity profile V (h), the climb angle γ(h), the rate of climb ḣ(h) and
the maximum fuel factor H(h) shown in Table 4.7 are used to compute
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Eqs. (4.45). These quantities have been found by using four intervals to
be 47.2 mi, 7.17 min, and 390 lb respectively (Table 4.8). Note that the
fuel is less than 4% of the climb weight, justifying the approximation of
weight constant on the right-hand sides of the climb equations of motion.

These results have also been obtained using only one interval.
The agreement between n = 1 and n = 4 is very good in γ and ḣ because
they are nearly linear in h. The error in H is less than 10%.

Table 4.8 SBJ Optimal Climb Path Performance

W = 11,000 lb, P = .98, h0 = 0 ft, hf = 35,000 ft

7 Intervals 1 Interval
Distance (mi) 42.2 38.4

Minimum Distance Time (min) 9.22 10.0
Fuel (lb) 484. 538.

Distance (mi) 51.4 47.7
Minimum Time Time (min) 6.97 7.15

Fuel (lb) 399. 433
Distance (mi) 47.2 45.8

Minimum Fuel Time (min) 7.17 7.28
Fuel (lb) 390. 424.

4.14 Constant Equivalent Airspeed Climb

An example of selecting an arbitrary velocity profile is to assume that the
airplane is flown at constant equivalent airspeed. Note that in Fig. 4.11
the optimal velocity profiles for the SBJ are functions of the altitude and
may be difficult to fly. On the other hand, the pilot has an instrument
for equivalent (indicated) airspeed, so it is possible to fly a constant
equivalent airspeed trajectory. Here, the velocity profile is given by

V (h) =
Ve

√

σ(h)
(4.46)

the distance, the time, and the fuel along the minimum fuel trajectory from
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4.15 Descending Flight

In the mission profile, the descent segment is replaced by extending the
cruise segment and, hence, is not very important. However, descending
flight is just climbing flight for the case where the thrust is less than the
drag. Here, the descent angle becomes negative so the descent angle is
defined as φ = −γ; the rate of climb becomes negative so the rate of

descent is defined as ż = −ḣ; and the fuel factor is defined as dh/dW

since both dh and dW are negative. The calculation of the minimum
descent angle, the minimum descent rate, and the minimum fuel is the
same as that for climbing flight, as is the calculation of the distance,
time, and fuel.

Problems

All of the numbers in this chapter have been computed for the SBJ
in App. A. Make similar computations for the airplane of Fig. 4.13
which is the SBJ of App. A with a lengthened fuselage to accommodate
more passengers and with two Garrett TFE 731-2 turbofan engines. The
take-off gross weight is 17,000 lb which includes 800 lb of reserve fuel
and 6,200 lb of climb/cruise fuel.

1. Create functions that calculate the atmospheric properties, the
drag, and the thrust and SFC. To calculate the drag, you need
CD0(M) and K(M).

2. Calculate the flight envelope.

3. Calculate the maximum distance trajectory in cruise.

4. Calculate the minimum time trajectory in climb.
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Figure 4.13: Turbofan Business Jet



Chapter 5

Cruise and Climb of an Ideal

Subsonic Airplane

In Chap. 4, cruise and climb have been discussed for an arbitrary air-
plane. The data giving the aerodynamic and propulsion characteristics
of these airplanes is given in the form of tables of numbers (subrou-
tines), but they have been represented by functions of several variables.
Trajectories must be obtained numerically.

The purpose of this chapter is to use an approximate analyt-
ical model for a subsonic jet airplane to derive analytical results for
cruise and climb performance. The model is called the Ideal Subsonic
Airplane (ISA) and is composed of a parabolic drag polar with con-
stant coefficients, thrust independent of the velocity, and specific fuel
consumption independent of the velocity and power setting. The drag
polar is motivated by the fact that the optimal flight speeds for cruise
and climb occur at speeds where Mach number effects are negligible.
The thrust and specific fuel consumption forms are motivated by engine
performance charts.

Analytical results are important for a variety of reasons. They
expose important design parameters which might not be obvious from
numerical results. They can be used to check extensive numerical com-
putations. They can be used for back-of-the-envelope calculations. They
can be used in iterative design codes to reduce the amount of computa-
tion.

At this point the reader should return to Chap. 4 and read
the first few sections. The subjects covered were quasi-steady flight,
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mathematical degrees of freedom, special flight speeds, flight limitations,
and trajectory optimization. Actually, this chapter is a continuation
of Chap. 4, in that the functional relations D(h, V, L), T (h, V, P ), and
C(h, V, P ) are replaced by formulas representing the aerodynamics and
propulsion of the Ideal Subsonic Airplane. Then, analytical results are
derived for the flight envelope, the distance and time in cruise, and the
distance, time, and fuel in climb.

5.1 Ideal Subsonic Airplane (ISA)

The Ideal Subsonic Airplane (Sec. 3.9) has a parabolic drag polar with
constant CD0 and K, a thrust independent of the velocity, T (h, P ), and a
specific fuel consumption independent of the velocity and power setting,
C(h). For this airplane the drag D(h, V, L) is given by

D =
1

2
CD0ρSV 2 +

2KL2

ρSV 2
. (5.1)

where ρ(h) is the density at the altitude the airplane is flying, S is the
wing planform area, V is the velocity of the airplane, and L is the lift.
The thrust and the specific fuel consumption are approximated by

T = Tt(P )(ρ/ρt)
a, C = Ct(ρ/ρt)

b (5.2)

where the subscript t denotes a value at the tropopause. These formulas
are exact in the stratosphere where a = 1, and b = 0.

For quasi-steady flight, it is known that L = W . Hence, if h

and W are given, the drag (5.1) has a minimum with respect to the
velocity when

V = V ∗ (5.3)

where

V ∗ =

√

√

√

√

2W

ρS

√

K

CD0

. (5.4)

The minimum drag then has the value

D∗ = 2
√

CD0K W. (5.5)

From L = W , it is seen that the lift coefficient for minimum drag can
be written as

C∗

L
=

2W

ρSV ∗2
. (5.6)
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Hence, using Eq. (5.4) shows that the lift coefficient at the minimum
drag condition is given by

C∗

L =

√

CD0

K
. (5.7)

The lift to drag ratio or aerodynamic efficiency is defined as

E =
L

D
. (5.8)

For L = W and h, W given, the lift to drag ratio has a maximum when
the drag is a minimum so that

E∗ =
W

D∗

. (5.9)

Then, by using Eq. (5.5), it is seen that the maximum lift to drag ratio
is given by

E∗ =
1

2
√

CD0K
. (5.10)

In deriving the performance formulas, it is possible to use either
CD0, K or C∗

L
, E∗ since either set can be derived from the other. The

latter is used because the resulting formulas have a simpler form.

Analytical manipulations can be simplified by using the nondi-

mensional speed

u =
V

V ∗

, V ∗ =

√

2W

ρSC∗

L

. (5.11)

In terms of u, Eq. (5.1) for the drag becomes

D =
W

2E∗

(

u2 +
n2

u2

)

, (5.12)

where n = L/W is the load factor. For L = W (n=1), the expression
for the drag becomes

D =
W

2E∗

(

u2 +
1

u2

)

. (5.13)

If h, W are given, V ∗ is given, and u is proportional to V .
Hence, minimization of the drag with respect to V and minimization
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with respect to u are the same operation. Note that the drag has a
minimum with respect to u when u=1, Eq. (5.3), and has the minimum
value D∗ = W/E∗, Eq. (5.9).

The SBJ is the Subsonic Business Jet of App. A which is
powered by two GE CJ610-6 turbojet engines. The ISBJ is the Ideal
Subsonic Business Jet whose aerodynamic constants are given by CD0 =
.023 and K = .073 and whose engine characteristics Tt and Ct are given
in Table 3.7 with a = 1.2, b = 0.1 in the troposphere and a = 1, b = 0
in the stratosphere.

To see how the formulas are used, consider the Ideal Subsonic
Business Jet (ISBJ) at h=35,000 ft, W=11,000 lb, and P=.98. The
following numbers are given, can be looked up, or can be calculated:

h = 35, 000 ft, ρ = .000737 slug/ft3

a = 973 ft/s, ρt = .000706 slug/ft3

CD0 = .023, K = .073, C∗

L = .561, E∗ = 12.2

W = 11, 000 lb, S = 232 ft2

V ∗ = 480 ft/s, D∗ = 902 lb

P = 0.98, Tt = 1420 lb, a = 1.2, T = 1490 lb

Ct = 1.18 1/hr, b = 0.1, C = 1.19 1/hr = .000329 1/s

Vstall = 322 ft/s, Mmax = 0.81, VMmax = 788 ft/s

(5.14)

Note that all computations must be performed in the ft, lb, s,
rad system even though results may be given in mi, min, hr, or deg.

5.2 Flight Envelope

As stated in Sec. 4.5, the flight envelope is the region of the altitude-
velocity plane where an airplane can maintain steady level flight. For
the ISA, Eq. (4.9) becomes

T (h, P ) −
W

2E∗

(

u2 +
1

u2

)

= 0. (5.15)

Since the minimum drag (u = 1) is D∗ = W/E∗, the minimum thrust
required is Tmin = D∗. Hence, a nondimensional thrust τ is defined as

τ =
T

Tmin

=
T

D∗

=
T

W/E∗

≥ 1. (5.16)
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As a consequence, Eq. (5.15) becomes

τ −
1

2

(

u2 +
1

u2

)

= 0 (5.17)

and can be rewritten as

u4
− 2τu2 + 1 = 0. (5.18)

For a given altitude, weight and power setting (given τ), this quadratic
equation in u2 can be solved for the velocity as

u =
√

τ ±
√

τ 2 − 1. (5.19)

The minus sign gives the low-speed solution, and the plus sign gives the
high-speed solution.

Consider flight of the ISBJ at h = 35,000 ft, W = 11,000 ft,
and P=0.98 for which the data of Eq. (5.14) is valid. Let the low-
speed solution be denoted by subscript 1, and the high-speed solution,
by subscript 2. It is seen that τ=1.66, u1 = .580, and u2 =1.73. Also,
with V ∗ = 480 ft/s, V1 = 278 ft/s and V2 = 828 ft/s. Since Vstall = 322
ft/s, the low-speed solution is below the stall speed and does not exist.
It occurs at a lift coefficient where the parabolic drag polar is not valid.
Also, the high-speed solution is above VMmax

, meaning that the airplane
is not allowed to operate at the maximum speed at this altitude.

By varying the altitude, the curve in the altitude-velocity plane
defining the level flight speeds can be generated. Combined with what-
ever speed restrictions are imposed on the aircraft, the region below this
curve is called the flight envelope. See for example Fig. 4.2. For the
ISBJ the T − D = 0 curve is about 4,000 ft lower than that of Fig. 4.2.
The difference is caused by assuming thrust independent of the velocity.

The ceiling occurs when there is only one solution for the ve-
locity, that is, when

τ = 1 and u = 1. (5.20)

Use of the analytical expression (5.2) for T leads to following value of
the density at the ceiling:

ρ = ρt[W/(TtE
∗)]1/a . (5.21)

For most jet aircraft, the ceiling occurs in the stratosphere (a=1). For
the ISBJ, Eq. (5.14), the density and altitude of the ceiling are given by
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ρ= 4.48 E-4 slugs/ft3 and h=45,500 ft. The altitude is computed from
the formulas of the standard atmosphere for the constant temperature
part of the stratosphere. Finally, the velocity associated with the ceiling
is given by V=614 ft/s.

5.3 Quasi-steady Cruise

Next to be discussed are the distance and time during a constant altitude
cruise. These quantities are also called the range and endurance. How-
ever, because there is considerable distance associated with the climb,
the range might be taken to be the sum of the distance in climb and the
distance in cruise.

The equations for the cruise distance and the cruise time are
given by Eqs. (4.20) and (4.21) where the distance factor and the time
factor for the ISA are given by

F (W, V, h) = V

CT
= V

C(h)D(h,V,W )

G(W, V, h) = 1
CT

= 1
C(h)D(h,V,W )

(5.22)

Since C = C(h), it is not necessary to solve for the power setting in that
the thrust can be replaced by the drag (T = D). Then, for the ISA, Eq.
(5.13) leads to

F (W, V, h) = V ∗

C

u
W

2E∗ (u2+ 1
u2 )

G(W, V, h) = 1
C

1
W

2E∗ (u2+ 1
u2 )

(5.23)

where u = V/V ∗. Finally,

xf − x0 =
2E∗

C

∫

W0

Wf

V ∗

W

u3

u4 + 1
dW (5.24)

tf − t0 =
2E∗

C

∫

W0

Wf

1

W

u2

u4 + 1
dW (5.25)

These equations give the distance and the time of the ISA in
terms of the unknown velocity profile V (W ). At this point, the distance
and the time can be integrated for a particular velocity or for the optimal
velocity profile. The optimal velocity profiles are derived first so that
the results for particular velocity profiles can be evaluated.
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5.4 Optimal Cruise Trajectories

Since the distance factor has a maximum (see for example Fig. 4.4)
with respect to the velocity, there is a maximum distance trajectory.
Similarly, because the time factor has a maximum (see for example Fig.
4.5) with respect to the velocity, there is a maximum time trajectory.

5.4.1 Maximum distance cruise

Since the altitude is constant in cruise and the weight is constant during
optimization, u is proportional to V . Hence, the velocity for maximum
distance is obtained by maximizing F with respect to u. It is given by
u = 4

√
3 or equivalently

V =
4
√

3V ∗ =
4
√

3

√

2W

ρSC∗

L

. (5.26)

For the ISBJ, Eq. (5.14), the speed for maximum distance varies between
700 and 550 ft/s as the weight decreases from 13,000 to 9,000 lb.

Next, the distance and time integrals become

xf − x0 = 33/4

2
E∗

C

[

2
ρSC∗

L

]1/2 ∫ W0

Wf

1

W 1/2
dW

tf − t0 = 31/2

2
E∗

C

∫

W0

Wf

1

W
dW

(5.27)

and can be integrated to obtain the maximum distance and the time
along the maximum distance path:

xf − x0 = 33/4 E∗

C

√

2W0

ρSC∗

L

[

1 −

√

Wf

W0

]

tf − t0 = 31/2

2
E∗

C
ln
[

W0

Wf

]

.

(5.28)

Consider the cruise of the ISBJ at h = 35,000 ft with W0 =
12,000 lb and Wf = 10,000 lb (Wfuel = 2000 lb ). With the data of Eq.
(5.14), these formulas yield a maximum distance of 698 mi and a flight
time of 1.63 hr.
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The expression for the maximum distance can be solved for the
minimum fuel required for a given distance as follows:

Wfuel

W0

= 1 −

(

1 −
C(xf − x0)

33/4E∗

√

ρSC∗

L

2W0

)2

. (5.29)

Note that the fuel is a function of both the distance and the weight at
which the cruise is begun. There are two comments that can be made
about this formula. First, it can be shown that the fuel decreases as W0

decreases. Second, in the stratosphere where C is constant, the formula
says that the fuel decreases with the altitude. However, as the cruise
altitude increases, more fuel is required to get to that altitude. It would
seem that there is an optimal climb-cruise trajectory for maximum range.
Another way to define the cruise altitude is to require that the maximum
rate of climb be a particular value.

5.4.2 Maximum time cruise

The velocity profile for maximum time is obtained by differentiating the
time factor (5.23) with respect to u. Maximum time occurs when u = 1
or equivalently

V = V ∗. (5.30)

For the ISBJ, Eq. (5.14), the optimal velocity varies between 500 and
430 ft/s as the weight decreases from 13,000 and 9,000 lb.

With this result, Eqs. (5.24) and (5.25) become

tf − t0 = E∗

C

∫

W0

Wf

1

W
dW

xf − x0 = E∗

C

[

2
ρSC∗

L

]1/2 ∫ W0

Wf

1

W 1/2
dW.

(5.31)

Then, the maximum time and the distance along the maximum time
path are given by

tf − t0 = E∗

C
ln
[

W0

Wf

]

xf − x0 = 2E∗

C

√

2W0

ρSC∗

L

[

1 −

√

Wf

W0

] (5.32)

Consider the cruise of the ISBJ at h = 35,000 ft with W0 =
12,000 lb and Wf = 10,000 lb (Wfuel = 2000 lb). With the data of
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Eq. (5.14), these formulas yield a maximum time of 1.88 hr and a
corresponding distance of 618 mi.

Note that the maximum distance (698 mi) is greater the dis-
tance along the maximum time path (618 mi) as it should be. Similarly,
the maximum time (1.88 hr) is greater than the time along the maximum
distance path (1.63 hr).

5.4.3 Remarks

From a design point of view, the aerodynamic configuration of an aircraft
being designed for maximum distance should be made such that the

quantity E∗/
√

C∗

L is as high as possible. In terms of CD0 and K, this

means that 1/(2C
3/4
D0

K1/4) should be as high as possible. On the other
hand, an airplane being designed for maximum time should have an E∗

or 1/(2C
1/2
D0

K1/2) as high as possible. With regard to the engines, they
should be designed for low specific fuel consumption.

While only optimal velocity profiles have been presented so far,
it is possible to fly other velocity profiles and lose only a small amount
of distance. Cruise at constant velocity is discussed in the next section.
Cruise at constant lift coefficient is considered in Prob. 5.1; and cruise
at constant power setting is discussed in Prob. 5.2. The importance of
the optimal velocity profile is that the loss incurred by flying some other
velocity profile can be assessed.

5.5 Constant Velocity Cruise

Because the optimal velocity (distance or time) varies with the weight, it
is not easily flown by a pilot. On the other hand, the airspeed indicator at
constant altitude is proportional to the velocity so that cruise at constant
velocity can easily be flown by a pilot. A question to be answered is how
much distance or time is lost by flying this velocity profile instead of the
optimum.

The purpose of this section is to give an example of computing
the distance for a given velocity profile, in this case, constant velocity.
Here,
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u =
V

V ∗

= V

√

ρSC∗

L

2W
(5.33)

which contains the weight. Substitution into the distance equation (5.24)
leads to

xf − x0 =
V

C

∫

Wf

W0

dW
1
2
CD0ρSV 2 + 2KW 2

ρSV 2

(5.34)

as it should. This integral has the form

∫

dx

a2 + b2x2
=

1

ab
tan−1 bx

a
(5.35)

where

a =

√

CD0ρSV 2

2
, b =

√

2K

ρSV 2
. (5.36)

Hence, the distance becomes

xf − x0 =
V

C

1

ab

[

tan−1 bW0

a
− tan−1 bWf

a

]

. (5.37)

Because of the identity

tan−1 x − tan−1 y = tan−1 x − y

1 + xy
, (5.38)

Eq. (5.37) becomes after some rearranging

xf − x0 =
V

C

1

ab
tan−1

bW0

a

(

1 −
Wf

W0

)

1 + ( bW0

a
)2 Wf

W0

. (5.39)

After substitution of a and b, the following formula for the distance is
obtained for a constant velocity cruise from W0 to Wf :

xf − x0 =
2E∗V

C
tan−1

2W0

C∗

L
ρSV 2 (1 −

Wf

W0
)

1 + ( 2W0

C∗

L
ρSV 2 )2 Wf

W0

(5.40)

The ratio Wf/W0 is related to the fuel fraction Wfuel/W0 as

Wf

W0
= 1 −

Wfuel

W0
. (5.41)
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Note that the distance depends on both the amount of fuel consumed
and the airplane weight at the beginning of the cruise.

It is possible to solve for the minimum fuel required to go a
given distance as

Wfuel

W0
= 1 −

2W0

C∗

L
ρSV 2 − tan

C(xf−x0)

2E∗V

2W0

C∗

L
ρSV 2

(

1 + 2W0

C∗

L
ρSV 2 tan

C(xf−x0)

2E∗V

) . (5.42)

In Sec. 5.4.1, the velocity profile which maximizes the distance
is found by considering all possible velocity profiles. Hence, that velocity
profile is the maximum. In this section, only constant velocity profiles
are considered. It is possible to find the best constant velocity, but it is
not in general as good as the maximum.

At what speed should the airplane be flown to get the best
constant-speed distance? This question can be answered by taking a
derivative of Eq. (5.40) with respect to V . The resulting equation must
be solved numerically. The other possibility is to calculate the distance
(5.40) for a lot of values of the velocity and take the highest value.
Either way, for the data (5.14), the best distance for the ISBJ occurs
at the velocity V = 630 ft/s and has the value 697 mi. Note that the
maximum distance is given by 698 mi. Hence, flying at the best constant
velocity gives a distance which is close to the optimum and can be used
with confidence because the optimum is known.

Note that the time along a constant velocity path is given by

tf − t0 =
xf − x0

V
. (5.43)

The question of which speed should be flown for the best constant-speed
time is answered in the same manner as that for the best constant-speed
distance.

5.6 Quasi-steady Climb

The distance, time, and fuel for a quasi-steady climb from h0 to hf are
given by Eqs. (4.39) through (4.41), that is,

xf − x0 =
∫

hf

h0

1

γ
dh (5.44)
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tf − t0 =
∫

hf

h0

1

ḣ
dh (5.45)

W0 − Wf =
∫

hf

h0

1

H
dh. (5.46)

In these equations, γ is the flight path angle, ḣ is the rate of climb,
and H is the fuel factor given by Eqs. (4.32) through (4.34). For the
Ideal Subsonic Airplane, γ, ḣ, and H can be written in terms of the
nondimensional velocity u and the nondimensional thrust τ as

γ =
1

E∗

[

τ −
1

2

(

u2 +
1

u2

)]

(5.47)

ḣ =
V ∗

E∗

[

τu −
1

2

(

u3 +
1

u

)]

(5.48)

H =
V ∗

WCτ

[

τu −
1

2

(

u3 +
1

u

)]

. (5.49)

These equations give the distance, time, and fuel written in
terms of the unknown velocity profile V (h). Hence, given the velocity
profile, these equations can be integrated, in principle, to give formulas
for the distance, time, and fuel.

5.7 Optimal Climb Trajectories

Because the drag has a minimum with respect to the velocity, the climb
angle, the rate of climb, and the fuel factor all have a maximum with
respect to the velocity. Hence, there are three possible optimal trajecto-
ries: (1) minimum distance, (2) minimum time, and (3) minimum fuel.
Each optimal trajectory is found by minimizing one of the integrals in
Eqs. (5.44) through (5.46) with respect to the velocity. Since the weight
is fixed and the altitude is fixed while differentiating with respect to the
velocity, V ∗ is constant, and u is directly proportional to V . Hence,
optimal climb trajectories are obtained by minimizing with respect to u.

It is not possible to obtain analytical solutions for the distance,
time and fuel of the ISBJ along each of the optimal paths. Their values
can be computed using Eqs. (4.45). The numbers for doing so are listed
in Table 5.1. Note that the maximum flight path angle is 27.0 deg and
the maximum rate of climb is 204 ft/s (12,000 ft/min). They both occur
at sea level where the thrust is the highest.
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5.7.1 Minimum distance climb

From Eqs. (5.44) and (5.47), it is seen that the minimum distance climb

is obtained by maximizing the climb angle γ with respect to u at each
altitude. The optimal velocity is given by u=1 or

V = V ∗ (5.50)

and the maximum flight path angle is

γ =
τ − 1

E∗

. (5.51)

The rate of climb and the fuel factor along this path are given by

ḣ = V ∗(τ−1)
E∗

H = V ∗(τ−1)
WCτ

.
(5.52)

The minimum distance climb has been computed for the ISBJ.
The numbers needed to do so are shown in Table 5.1, and the distance,
time, and fuel are given in Table 5.2. Note that the minimum distance
is 41.8 mi, and the corresponding time and fuel are 9.59 min and 571 lb.

Table 5.1 ISBJ Optimal Climb Point Performance

W=11,000 lb, P=.98

Minimum Distance Minimum Time

h τ V γmax ḣ H V γ ḣmax
H

ft ft/s deg ft/s ft/lb ft/s deg ft/s ft/lb
0 6.76 268 27.0 126. 55.8 572 20.5 204. 90.4

5,000 5.65 287 21.8 1.09 58.9 564 16.9 166. 89.4
10,000 4.70 310 17.4 94.0 61.8 558 13.7 134. 88.0
15,000 3.88 336 13.5 79.2 64.2 553 11.0 106. 85.8
20,000 3.18 365 10.2 65.1 65.5 550 8.55 82.1 82.5
25,000 2.58 398 7.42 51.6 64.9 548 6.42 61.5 77.4
30,000 2.08 436 5.06 38.5 61.3 550 4.53 43.6 69.4
35,000 1.66 479 3.08 25.8 52.4 557 2.87 27.9 56.7
40,000 1.31 537 1.43 13.4 35.5 578 1.38 14.0 36.9
45,000 1.03 606 0.12 1.31 4.52 610 0.12 1.32 4.54
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Table 5.2 ISBJ Optimal Climb Path Performance

W = 11,000 lb, P = .98, h0 = 0 ft, hf = 35,000 ft, ∆h = 5,000 ft

Distance (mi) 41.8
Minimum Distance Time (min) 9.59

Fuel (lb) 571
Distance (mi) 48.7

Minimum Time Time (min) 7.74
Fuel (lb) 439

5.7.2 Minimum time climb

The minimum time climb is obtained by maximizing the rate of climb
(5.48) at each altitude. The optimal velocity profile is given by

V =
V ∗

√
3

√

τ +
√

τ 2 + 3, (5.53)

and the maximum rate of climb has the value

ḣ =
2V ∗

33/2E∗

√

τ +
√

τ 2 + 3 [2τ −
√

τ 2 + 3 ]. (5.54)

Next, the flight path angle and the fuel factor along this path become

γ = 2
3E∗

[2τ −
√

τ 2 + 3 ]

H = 2V ∗
2

WCE∗τ

√

τ +
√

τ 2 + 3 [2τ −
√

τ 2 + 3 ].

(5.55)

The minimum time climb has been computed for the ISBJ. The
numbers needed to do so are shown in Table 5.1, and the distance, time,
and fuel are given in Table 5.2. Note that the minimum time is 7.74
min, and the corresponding distance and fuel are 48.7 min and 439 lb.
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5.7.3 Minimum fuel climb

The fuel factor has a maximum with respect to the velocity. However,
because C = C(h) and T = T (h, P ), the minimum fuel climb is identical
with the minimum time climb. Another way of saying this is that the
velocity profile for minimum fuel is the same as that for maximum rate
of climb.

5.8

Note that the optimal velocity profiles for the distance and the time
are not easy for a pilot to fly because they depend on the altitude.
On the other hand, a climb at constant equivalent airspeed is easily
flown because the pilot can fly at constant indicated airspeed which is
approximately the equivalent airspeed.

As an example of prescribing a velocity profile, consider a climb
of the ISA at constant equivalent airspeed (same as constant dynamic
pressure). For such a climb, Ve =

√
σV so that the true airspeed is

V =
Ve
√

σ
(5.56)

which is the velocity profile V (h). This means that

u =
V

V ∗

=
Ve

√
σV ∗

=
Ve

V ∗

s

(5.57)

where V ∗

s
is the velocity for maximum lift-to-drag ratio at sea level. The

result is that u = Const along this climb.

For a particular value of u, the quantities γ(h), ḣ(h), and H(h)
are given by Eqs. (5.47) through (5.49) and can be integrated for the
distance, time and fuel using Eqs. (5.44) through (5.46). Analytical
results cannot be obtained for a standard atmosphere, because τ is a
complicated function of altitude. For the turbojet, analytical results
can be obtained for an exponential atmosphere for distance and time
but not for fuel. Since the numerical procedure must be used for the
fuel, it might as well be used for distance and time as well.

For the turbofan, it is possible to use T = Tt(P )(ρ/ρt) and C =
Ct =Const throughout the atmosphere. For this case, the exponential

Climb at Constant Equivalent Airspeed
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atmosphere ρ = ρ0 exp(−h/λ) gives analytical results for the distance,
time and fuel. Here, for u = Const,

xf − x0 = −
E∗λ

d

[

η + ln(τfe
−η

− d)
]ηf

η0

(5.58)

tf − t0 =
E∗λ

Ve

√

σt

τtd

[

ln

√
τte−η +

√
d

√
τte−η +

√
d

]ηf

η0

(5.59)

W0 − Wf =
2WC

Ve

√
τt



−
√

e−η +
1

2

√

d

τt

ln

√
τte−η +

√
d

√
τte−η +

√
d





ηf

η0

(5.60)

where

d =
1

2

(

u2 +
1

u2

)

, η =
h − ht

λ
. (5.61)

The final question is what value of Ve should be flown for best
distance, for best time, and for best fuel. How do these values compare
with the optimal values?

5.9 Descending Flight

Descending flight occurs when T < D. The analysis is the same as for
climbing flight with two exceptions. First, the minimum distance path
becomes a maximum distance path. Second, the minimum time path
becomes a maximum time path.

Problems

5.1 Consider the ISA in a constant altitude cruise. If the airplane is
also flown at constant lift coefficient, show that the velocity profile
V (W ) is given by

V (W ) =

√

2W

ρSCL

.

Next, show that the distance and the time are
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xf − x0 =
2E(CL)

C

√

2

ρSCL

(
√

W0 −

√

Wf )

tf − t0 =
E(CL)

C
ln

W0

Wf
.

With regard to the airframe, the distance has its highest value
when CL is chosen to maximize E/

√
CL where

E =
CL

CD0 + KC2
L

.

What is this CL, and what is the highest value of E/
√

CL? If
the airplane is flown at the CL for maximum L/D, what is the
corresponding value of E/

√
CL? Show that flying at E∗ leads to a

12% reduction in the distance relative to the best distance.

5.2 Consider the ISA in a constant power setting (constant thrust)
cruise. By solving the equation T (h, P ) − D(h, V, W ) = 0 for the
velocity, show that the high speed solution for V (W ) is given by

V =

√

2TE∗

ρSC∗

L

√

√

√

√

1 +

√

1 −

(

W

TE∗

)2

.

Next, show that the distance integral becomes

xf − x0 =
E∗

C

√

2TE∗

ρSC∗

L

∫

µ0

µf

√

1 +
√

1 − µ2 dµ

where µ = W/TE∗. By using the change of variables z =
√

1 − µ2,
show that the distance integral can be integrated to give

xf − x0 =
2E∗

3C

√

2TE∗

ρSC∗

L

[A(W0) − A(Wf )]

where

A(W ) =



2 +

√

1 −

(

W

TE∗

)2




√

√

√

√

1 −

√

1 −

(

W

TE∗

)2

.
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Consider the distance for the ISBJ at h=35,000 ft when W0 =12,000
lb and Wf = 10,000 lb. Plot the distance versus T to find the thrust
for best distance and the best distance. Compare the result with
the maximum distance of 698 mi. Conclusion?

5.3 Derive the equation for the time for Problem 5.2.

5.4 The equations of motion for gliding flight (T = 0, W = Const) of
an arbitrary airplane are given by

ẋ = V

ḣ = V γ

0 = D(h, V, L) + Wγ

0 = L − W.

How many mathematical degrees of freedom are there? Change the
variable of integration to the altitude and recompute the number
of mathematical degrees of freedom.

Show that the distance and time can be written as

xf − x0 =
∫

h0

hf

dh

φ(h, V, W )

tf − t0 =
∫

h0

hf

dh

ż(h, V, W )

where the glide angle φ
∆
= −γ and the rate of descent ż

∆
= −ḣ are

given by

φ =
D(h, V, W )

W

ż =
D(h, V, W )V

W
.

Hence, maximum distance is achieved by flying at the speed for
minimum glide angle at each altitude, and maximum time, by
flying at the speed for minimum rate of descent at each altitude.
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5.5 For the ISA, show that maximum distance in glide occurs when
u = 1 and that the minimum glide angle is φ = 1/E∗. Next, show
that the maximum distance is

xf − x0 = E∗(h0 − hf )

and that the corresponding time is

tf − t0 =
E∗

V ∗

s

∫

h0

hf

√
σdh.

where V ∗

s is V ∗ at sea level. Evaluate the integral for an exponen-
tial atmosphere.

Note that a glider being designed for maximum distance should
have a high E∗.

5.6 For the Ideal Subsonic Airplane, show that maximum time in glide
occurs when u = 1/ 4

√
3, that the minimum rate of descent is

ż =
2 4
√

3

3

V ∗

E∗

and the maximum time is

tf − t0 =
3

2 4
√

3

E∗

V ∗

s

∫

h0

hf

√
σdh.

Also, show that the distance is

xf − x0 =

√
3

2
E∗(h0 − hf ).

Aerodynamically, how should a glider be designed for maximum
time?

5.7 For gliding flight of the ISA, show that the distance and time
achieved along a constant lift coefficient flight path is given by

xf − x0 = E(CL)(h0 − hf )
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tf − t0 =
E

V ∗

s

∫

h0

hf

√
σdh.

At what CL should the glider be flown to achieve the best distance?
Show that a constant CL path is the same as a constant equivalent
airspeed path.

5.8 Show that the distance in gliding flight of the ISA along a constant
velocity trajectory is given by

xf − x0 =
∫

h0

hf

W dh

(1/2)CD0ρSV 2 + 2KW 2/ρSV 2

which must be integrated numerically for the ρ(h) from the stan-
dard atmosphere. Show that the integration can be performed if
the exponential atmosphere is used and the density is made the
variable of integration.

Note that the time is given by

tf − t0 =
xf − x0

V

5.9 The climb-cruise allows the airplane to gain altitude as the airplane
loses weight. It can be studied by assuming quasi-steady flight
and Wγ << T or D. Consider the ISA in the stratosphere (T =
Ttρ/ρt, C = Ct), and assume that the airplane is being flown at
constant power setting and constant lift coefficient. Show that the
altitude varies with the weight as

ρ = ρtW/(TtE)

and that the velocity is constant, that is,

V =
√

2TtE/(ρtSCL).

Finally, show that the distance is given by

xf − x0 =
E3/2

CC
1/2
L

√

2Tt

ρtS
ln

W0

Wf

and that the CL that maximizes the distance is

CL = C∗

L/
√

2.

Compare the climb-cruise with the constant altitude cruise (Prob.
5.1).



Chapter 6

Take-off and Landing

In this chapter, the take-off and landing segments of an airplane tra-
jectory are studied. After the segments are defined, high-lift devices
are discussed, and a method for predicting their aerodynamics is given.
Next, the equations of motion for the ground run are derived and solved
for distance. Then, specific formulas are obtained for the take-off ground
distance and the landing ground distance. Transitions from take-off to
climb and descent to landing are investigated so that take-off distance
and landing distance can be estimated.

6.1 Take-off and Landing Definitions

The purpose of this section is to define the take-off and landing maneu-
vers so that the take-off and landing distances can be determined. It
is assumed that the altitude is constant during the take-off and landing
ground runs and that the altitude is sea level.

Take-off

The take-off segment of an aircraft trajectory is shown in Fig.
6.1. The aircraft is accelerated at constant power setting and at a con-
stant angle of attack (all wheels on the ground) from rest to the rotation

speed VR. For safety purposes, the rotation speed is required to be some-
what greater than the stall speed, and it is taken here to be

VR = 1.2Vstall = 1.2

√

2W

ρSCLmax

. (6.1)
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When the rotation speed is reached, the aircraft is rotated over a short
time to an angle of attack which enables it to leave the ground at the
lift-off speed VLO and begin to climb. The transition is also flown at
constant angle of attack and power setting. The take-off segment ends
when the aircraft reaches an altitude of h = 35 ft.

35 ft

V0 = 0                                    VR = 1.2 Vstall       VLO 

Ground run distance

Take-off distance 

Transition distance

Figure 6.1: Take-off Definitions

Because airplanes are designed essentially for efficient cruise,
they are designed aerodynamically for high lift-to-drag ratio. A trade-
off is that the maximum lift coefficient decreases as the lift-to-drag ratio
increases. This in turn increases the stall speed, increases the rotation
speed, and increases the take-off distance. Keeping the take-off distance
within the bounds of existing runway lengths is a prime consideration in
selecting the size (maximum thrust) of the engines. The same problem
occurs on landing but is addressed by using flaps. A low flap deflection
can be used on take-off to reduce the take-off distance.

The take-off segment is composed of a ground run and a tran-

sition to climb. During the ground run portion, the drag polar of the
airplane includes the drag of the landing gear, the drag and lift of the
flaps, and a reduction in the induced drag due to the presence of the
ground. The ground prevents the air moving over the wing from being
deflected as far downward as it is in free flight. Hence, the resultant
aerodynamic force is not rotated as far backward, thus decreasing the
induced drag. In terms of the parabolic drag polar, the zero-lift drag
coefficient is increased, and the induced drag factor is decreased. As an
example, the SBJ might have CD0 = 0.023, K = 0.073 in free flight, but
it would have CD0 = 0.064, K = 0.060 during the ground run with flaps
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set at 20 deg. During the transition, the ground effect decreases with
altitude and landing gear and flap retraction is begun.

In the analysis which follows, the take-off is considered under
the assumption that the rotation speed and the lift-off speed are identi-
cal. In other words, the aircraft is accelerated to the lift-off speed and
then rotated instantaneously to the angle of attack for transition.

There is another element of take-off for multi-engined airplanes.
This occurs when the airplane loses an engine during the ground run.
When this happens, the pilot must decide whether to abort the take-off
or to take-off on one less engine and fly around the pattern and land.
This maneuver is analyzed by defining a speed, say VD. If the engine
fails before VD, the airplane is stopped by braking. If the engine fails
after VD, the take-off is completed. For some VD the take-off distance
equals the accel/stop distance. This distance is called the balanced field

length, and this VD is called the decision speed.

Landing

The landing segment of an aircraft trajectory is shown in Fig.
6.2. Landing begins with the aircraft in a reduced power setting descent
at an altitude of h = 50 ft with gear and flaps down. As the aircraft nears

Ground  run distance

Landing distance

50 ft

VTD = 1.2 Vstall                                                             Vf

Transition distance

Figure 6.2: Landing Definitions

the ground, it is flared to rotate the velocity vector parallel to the ground.
The aircraft touches down on the main gear and is rotated downward to
put the nose gear on the ground. Then, brakes and sometimes reverse
thrust, spoilers, and a drag chute are used to stop the airplane. The
landing ends when the aircraft comes to rest. For safety purposes, the
touchdown speed is required to be somewhat greater than the stall speed
and is taken here to be

VTD = 1.2Vstall. (6.2)
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The landing segment is composed of a transition and a ground

run. During the transition, the airplane approaches the runway along
the glide slope and at some point flares to rotate the velocity vector
parallel to the ground. The airplane is in ground effect so that its lift
increases and its induced drag decreases as the aircraft nears the ground.
In addition the drag polar is affected by landing gear drag, flap drag,
and flap lift as in take-off. However, flaps are at the highest setting to
produce the highest CLmax

, the most drag, and the lowest touchdown
speed. The ground run begins at touchdown. The airplane is rotated to
the ground run attitude (all wheels on the ground); brakes are applied to
increase the coefficient of rolling friction; thrust is reversed; and spoilers
are extended. Thrust reversers deflect the jet stream of an engine so
that the thrust acts opposite to the direction of motion. As much as
40% of the forward thrust can be achieved during reversal. Spoilers are
metal panels located on the top of the wing forward of the flaps. When
they are rotated into the air, they increase the drag, and they spoil the
flow over the rest of the wing and reduce the lift, thereby increasing
the reaction force of the runway on the airplane and, hence, the friction
force. Finally, drag chutes are used when everything else fails to stop an
aircraft in available runway lengths. Their effect is to increase the drag
coefficient. For the SBJ, the parabolic drag polar during the ground run
with the gear down and flaps down at 40 deg is given by CD0 = .083 and
K = .052.

To achieve an analytical solution. it is assumed that the air-
craft touches down at VTD = 1.2Vstall and rotates instantaneously to the
ground roll attitude. Brakes are applied at touchdown. The ground run
ends when the aircraft comes to rest.

6.2 High-lift Devices

The maximum lift coefficient plays an important role in determining the
take-off and landing distances of an airplane. There are two types of
devices which are used to increase the maximum lift coefficient: slats

and flaps.

The slat is a leading edge device and is shown in Fig. 6.3.
A complicated mechanism extends and rotates the slat to an effective
position. The slat increases CLmax

without changing CLα
or α0L as shown

in Fig. 6.4.
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Chord line

δS

Figure 6.3: Closed and Open Slat

No slats

Slats

α

CL

Figure 6.4: Effect of Slats
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There are several types of flaps as shown in Fig. 6.5, where
positive flap deflection is trailing edge down. In general, flaps make α0L

more negative, do not change CLα
, and increase CLmax

(see Fig, 6.6).
The effect of a flap deflection on the drag polar is shown in Fig. 6.7.
This polar differs from the regular polar in that the minimum drag point
is above the axis. While a more general parabola can be fit to this polar
(see Prob. 3.5), it is also possible to fit the regular parabola to it and
realize that it is not accurate for both low and high lift coefficients.

6.3 Aerodynamics of High-Lift Devices

The lift coefficient and drag coefficient of an airplane in free flight are
given in terms the angle of attack α by

CL = CLα
(α − α0L)

CD = CD0 + KC2
Lα

(α − α0L)2
(6.3)

For take-off and landing CD0 and K are taken to be the values in free
flight at M = 0.2. If the angle of attack is the same, but the landing
gear is down and the flaps are deflected, the force coefficients become

CL = CLα
(α − α0L) + ∆CLF

CD = CD0 + ∆CDlg
+ ∆CDF

+ [K/f(δF )]C2
Lα

(α − α0L)2
(6.4)

The quantity ∆CDlg
is the increase in CD0 due to the landing gear; it is

estimated from the formula

∆CDlg
= .0032 W 0.8

TO/S (6.5)

where WTO is the take-off gross weight and S is the wing planform area.
Note that the flaps have three effects on CL and CD. The lift coefficient is
increased by the amount ∆CLF

; the zero-lift drag coefficient is increased
by the amount ∆CDF

; and the induced drag factor is increased by the
factor 1/f(δF ), Fig. 6.8. The prediction of these quantities is discussed
in the next section.

The drag coefficient can be written in terms of the lift coeffi-
cient so that CL and the drag polar are given by

CL = CLα
[(α − α0L) + ∆CLF

]

CD = CD0 + ∆CDlg
+ ∆CDF

+ [K/f(δF )][CL − ∆CLF
]2.

(6.6)
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Double-Slotted Fowler

Fowler

Triple-Slotted

Double-Slotted

Single-Slotted

Split

Plain

Figure 6.5: Types of Flaps



6.3. Aerodynamics of High-Lift Devices 135

Flaps

No flaps

α

CL

Figure 6.6: Effect of Flaps

Flaps

No Flaps
CL

CD

Figure 6.7: Effect of Flaps on the Drag Polar
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Figure 6.8: Effect of Flap Deflection on Induced Drag Factor

If the airplane is near the ground, an interesting phenomenon
called ground effect occurs. In general, the pressure below the wing
increases thereby increasing the lift. Also, the aerodynamic force is
not rotated as far back so that the induced drag is decreased. The
expressions for CL and CD become

CL = GL(h̄)[CLα
(α − α0L) + ∆CLF

(δF )]

CD = CD0 + ∆CDlg
+ ∆CDF

(δF )

+ GD(h̄)[K/f(δF )][CL − ∆CLF
(δF )]2

(6.7)

where GL ≥ 1 and GD ≤ 1 are given by

GL = 1.0 + (0.00211 − 0.0003(AW − 3.0))e5.2(1−h̄/bW )

GD = 1.111 + 5.55h̄/bW − [29.8(h̄/bW + 0.02)2 + 0.817]1/2.
(6.8)

In these relations, h̄ is the height of the flap trailing edge above the
ground. The equation for GD is valid for h̄ < 0.9bW , otherwise, GD =
1.0.

The equation for the drag polar has the form

CD = CDm
+ Km(CL − CLm

)2 (6.9)

where
CDm

= CD0 + ∆CDlg
+ ∆CDF

(δF )

Km = GD(h̄)[K/f(δF )]

CLm
= ∆CLF

(δF ).

(6.10)
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It is possible to fit this polar with the standard form CD = CD0 + KC2
L

with the understanding that it does not fit the actual polar at low and
high values of CL.

6.4 ∆CLF
, ∆CDF

, and CLmax

In this section formulas are provided for estimating ∆CLF
, ∆CDF

, and
CLmax

. The method used to compute these values is based on the knowl-
edge of the flap characteristics for the following reference conditions (Ref.
Sc): λW = 1, AW = 12, (t/c)W = 0.10, ΛqcW

= 0, δS = 45 deg, and
δF = 60 deg. The reference values for the increment in lift coefficient
due to the flaps (∆CLF

)r, the increase of the lift coefficient due to slats
(∆CLS

)r, the increment in drag coefficient due to flaps (∆CDF
)r, and

the maximum lift coefficient (CLmax
)r are shown in Table 6.1. These ref-

erence values are corrected for the actual wing geometry and the actual
slat and flap deflections (δS and δF ).

Table 6.1. Reference Values for Flap Input Variables

Flap Type Plain Split Single- Double- Triple- Fowler Two-slot

Slotted Slotted Slotted Fowler

(δF )r 60 60 60 60 60 60 60

(δS)r 45 45 45 45 45 45 45

∆(CLF
)r 0.90 0.80 1.18 1.40 1.60 1.67 2.25

∆(CLS
)r 0.93 0.93 0.93 0.93 0.93 0.93 0.93

∆(CDF
)r 0.12 0.23 0.13 0.23 0.23 0.10 0.15

(CLmax
)r 1.4 1.4 1.4 1.4 1.4 1.4 1.4

The size of the slat is given by cS/cW , and it is assumed that
the slats extend over the entire exposed leading-edge of the wing; thus,

bS/bW = 1 − dB/bW (6.11)

The size of the flap is given by cF /cW and bF /bW .

In terms of the correction factors Ki, the increment in lift co-
efficient due to flaps is given by

∆CLF
= (∆CLF

)rK3K4K5K6K7K8K13K14, (6.12)
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and the increment in drag coefficient due to the flaps is given by

∆CDF
= (∆CDF

)rK16K17K18K19.K20 (6.13)

The maximum lift coefficient for the airplane in the clean con-
figuration is given by

CLmax
= K15 + K13K14K1K2(CLmax

)r (6.14)

while the maximum lift coefficient with flaps and slats extended is

CLmax
= K15 + K13K14[(CLmax

)rK1K2

+(∆CLF
)rK3K4K5K6K7K8 + (∆CLS

)rK9K10K11K12].
(6.15)

The correction factors Ki are obtained from the plots in Figs.
6.10 through 6.29. They are functions of geometry, flight condition, and
deflection angles. These plots are located at the end of the chapter
because there are so many of them. In Fig. 6.28 the sweep of the flap is
given by

ΛF = Λte + tan−1[4(cF/cW)/3(tanΛqc − tanΛte)] (6.16)

6.5 Ground Run

In Fig. 6.9, the forces acting on the airplane during the ground run are
shown (Ref. Mi1). In addition to the usual thrust, drag, lift and weight
forces, there are the reaction force R due to the runway and the friction

force f due to the rolling of the wheels about their axles and on the
runway. Actually, these forces act at the wheels but have been moved to
the center of gravity and accompanied by moments which are not shown.

Since the altitude is constant, there is no motion in the z di-
rection, and the flight path inclination is zero. Hence, the kinematic
equation in the x direction, the dynamic equations along the tangent
and the normal to the flight path, and the weight equation are written
as

ẋ = V

V̇ = (g/W )[T cos(α + ε0) − D − f ]

0 = T sin(α + ε0) + L + R − W

Ẇ = −CT

(6.17)
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Figure 6.9: Forces Acting on the Airplane During the Ground Run

In general, thrust and specific fuel consumption obey function
relations of the form T = T (h, V, P ) and C = C(h, V, P ). Here, however,
the altitude is constant, and the power setting is held constant. It is
shown later that the ground run distance is minimized by maximum
power setting. For the ground run, these functional relations become

T = T (V ) , C = C(V ) (6.18)

Next, the lift and drag coefficients obey functional relations of
the form CL = CL(α, M, δF ) and CD = CD(α, M, Re, δF ). Mach num-
ber effects are negligible because the speeds are low, and the Reynolds
number is held constant. Since the angle of attack and flap setting are
constant, the lift coefficient and the drag coefficient are constant along
the ground run. Finally, since drag and lift are defined by

D = (1/2)CDρSV 2, L = (1/2)CLρSV 2 (6.19)

and the altitude is constant, the drag and the lift satisfy functional
relations of the form

D = D(V ), L = L(V ) (6.20)

along the ground run.

Finally, the coefficient of rolling friction is defined as µ
∆
= f/R

so that the friction force is modeled as

f = µR (6.21)
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where µ is assumed constant. A typical value is µ = 0.02 for take-off on
a concrete runway. In landing with the brakes applied, µ increases to
0.3 - 0.4.

If Eqs. (6.18), (6.20), and (6.21) are substituted into Eqs.
(6.17) and the reaction force is eliminated between the second and third
equations, the equations of motion can be rewritten as

ẋ = V

V̇ = (g/W ){T (V ) cos(α + ε0) − D(V )

−µ[W − L(V ) − T (V ) sin(α + ε0)]}

Ẇ = −C(V )T (V ).

(6.22)

This system of equations has zero mathematical degrees of freedom
(three variables x(t), V (t), W (t) and three equations) and can in prin-
ciple be solved.

To obtain an analytical solution, it is assumed that α + ε0 is
small and that T (α + ε0) << W . Also, since the weight of the fuel
consumed on take-off (less than 50 lb for the SBJ) is negligible with
respect to the initial weight, the weight is assumed to be constant on the
right-hand side of the equations of motion during the ground run. This
assumption causes the weight equation to uncouple from the system, and
it can be solved once V (t) is known to obtain the fuel consumed during
take-off. While it is possible to solve the equations of motion with the
thrust in the form

T = P (h) + Q(h)V + R(h)V 2, (6.23)

it is assumed that the thrust is constant, equal to an average value over
the speed range encountered during the ground run. The specific fuel
consumption is also assumed constant. These assumptions are consistent
with the Ideal Subsonic Airplane assumptions.

Because of the above approximations. the equations of motion
can be rewritten as

ẋ = V

V̇ = (g/W )[T − µW − (1/2)ρS(CD − µCL)V 2]

Ẇ = −CT

(6.24)

Since the only variable on the right hand side of the equations of motion
is the velocity, the velocity is chosen to be the variable of integration.
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Hence, the equation for the ground run distance becomes

dx

dV
=

W

g

V

(T − µW ) − (1/2)ρS(CD − µCL)V 2
. (6.25)

This equation can be integrated to obtain

x = −
W

gρS(CD − µCL)
ln[A(V )] + Const (6.26)

where
A(V ) = (T − µW ) − (1/2)ρS(CD − µCL)V 2. (6.27)

It holds for both the take-off and landing ground runs. The correspond-
ing equations for the time and the fuel are easily obtained, and they are
left as exercises.

6.5.1 Take-off ground run distance

In the analysis which follows, the take-off is considered under the as-
sumption that the rotation speed and the lift-off speed are identical. It
is assumed that the aircraft is accelerated from rest to the lift-off speed,
rotated instantaneously to the angle of attack for transition, and leaves
the ground. The value of µ for take-off is taken to be 0.02 for a concrete
runway. From typical values for the SBJ, it is seen that T − µW > 0
and CD − µCL > 0.

The boundary conditions for the take-off ground run are as
follows:

V0 = 0, x0 = 0

Vf = VLO = VR = 1.2Vstall.
(6.28)

Application of the initial conditions in Eq. (6.26) leads to

Const =
W

gρS(CD − µCL)
ln[A(0)] (6.29)

and

x − x0 = −
W

gρS(CD − µCL)
ln

[

A(V )

A(0)

]

(6.30)

which gives the distance as a function of the velocity. Then, the ap-
plication of the final condition gives the take-off ground run distance

as

xf − x0 = −
W

gρS(CD − µCL)
ln

[

1 −
ρS(CD − µCL)V 2

LO

2(T − µW )

]

(6.31)
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where the minus sign is due to the logarithm being negative.

distance. The situation is not clear with respect to the flap setting. In
general, CL = CL(α, δF ) and CD = C̄D0(δF ) + K̄(δF )C2

L
where δF is

the flap angle. Since CD and CL increase with flap setting and the lift-
off or stall speed decreases, it is not possible to tell what the product
(CD − µCL)V 2

LO does without calculating some numbers.

6.5.2 Landing ground run distance

The equation for landing distance versus velocity is the same as that for
the take-off ground run, Eq. (6.26). The airplane is assumed to touch
down, rotate instantaneously to the ground roll attitude (all wheels on
the ground), and apply brakes. The last causes µ to be in the range
0.3-0.4. The thrust at idle is sufficiently small or reverse thrust (T < 0)
is applied so that T −µW < 0. Finally, even though the drag coefficient
includes gear and flaps, CD − µCL < 0.

The boundary conditions for the landing ground run are given
by

V0 = VTD = 1.2Vstall, x0 = 0

Vf = 0.
(6.32)

Application of the initial conditions leads to

Const =
W

gρS(CD − µCL)
ln[A(VTD)] (6.33)

so that the ground run distance versus velocity becomes

x − x0 = −
W

gρS(CD − µCL)
ln

[

A(V )

A(VTD)

]

. (6.34)

Finally, applying the final condition leads to the following expression for
the landing ground run distance:

xf − x0 =
W

gρS(CD − µCL)
ln

[

1 −
ρS(CD − µCL)V 2

TD

2(T − µW )

]

. (6.35)

The landing distance formula yields the effect of various param-
For example, if reverse thrust (T < 0) is applied, it is seen that

With respect to the power setting, it is easily seen that maxi-
mum power setting (maximum thrust) produces minimum ground run

eters.
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landing distance decreases as −T increases. Spoilers increase CD and
decrease CL; hence, they decrease xf since dxf/d(CD−µCL) is negative.
Also, a drag chute increases CD and decreases xf since dxf/dCD < 0.
The effect of flaps must be determined by computation unless VTD is
fixed at some value.

6.6 Transition

The objective is to obtain an estimate for the distance traveled while
the airplane climbs to h= 35 ft or descends from h = 50 ft. The analysis
begins with the nonsteady equations of motion which have two mathe-
matical degrees of freedom. It is assumed that the airplane is flown at
constant angle of attack and constant power setting. There are now zero
mathematical degrees of freedom so that the equations can be solved, in
principle. All of the assumptions and approximations which are made
are now summarized.

a. α = Const and P = Const

b. Fixed geometry: landing gear down and flaps down

c. Negligible ground effect: CD = Const and CL = Const

d. Small altitude interval: ρ = Const

e. γ2 << 1, ε2 << 1, T ε << W

f. V and W are constant on the right hand side of the equations of
motion

2) reduce to the following:

ẋ = V

ḣ = V γ

V̇ = (g/W )(T − D − Wγ)

γ̇ = (g/V )(n − 1)

Ẇ = −CT

(6.36)

With these assumptions the nonlinear equations of motion (Chap.
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where the load factor n
∆
= L/W is constant. The velocity and weight

equations uncouple from the system and can be solved later to get ve-
locity and weight changes. If the altitude is used as the variable of
integration, the remaining equations become

dx

dh
= 1

γ

dt

dh
= 1

V γ

dγ

dh
= g(n−1)

V 2γ

(6.37)

6.6.1 Take-off transition distance

The boundary conditions for the take-off transition at sea level are given
by

h0 = 0, x0 = 0, γ0 = 0,

hf = 35 ft.
(6.38)

Then, integration of the γ equation leads to

γ =
+
−

√

2g(n − 1)h

V 2
+ 2C. (6.39)

For take-off, γ is positive, and application of the initial conditions gives

γ = (1/V )
√

2g(n − 1)h. (6.40)

At the final point, it is seen that

γf = (1/V )
√

2g(n − 1)hf . (6.41)

Next, the distance equation can be integrated subject to the initial and
final conditions to obtain the take-off transition distance

xf − x0 = V

√

2hf

g(n − 1)
. (6.42)

It is possible that the flight path inclination at the end of the
transition is higher than that desired for climb. In this case, the transi-
tion has a part where γ is rotated from zero to the climb angle γc and a
part where γ = γc. The analysis for this case is the same as that for the
landing transition.
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6.6.2 Landing transition distance

The landing transition is similar to the take-off transition and is governed
by Eqs. (6.37). However, the airplane is assumed to be approaching the
runway along the glide slope (γg = Const) with gear and flaps down.
From h0 = 50 ft down, the airplane continues along the glide slope
with n = 1 until it can switch to the flare (n = Const) and land with
hf = 0, γf = 0. The boundary conditions are given by

h0 = 50 ft, x0 = 0, γ0 = γg

hf = 0, γf = 0.
(6.43)

Along the glide slope, Eqs. (6.37) can be integrated as

x − x0 =
h − h0

γg

. (6.44)

At the point where the switch to the flare is made (subscript s),

xs − x0 =
hs − h0

γg

. (6.45)

For the flare, the flight path angle is negative so that Eq. (6.39)
becomes

γ = −(1/V )
√

2g(n − 1)h (6.46)

and at the switch point gives

hs =
(V γg)

2

2g(n − 1)
. (6.47)

Next the distance equation for the flare can be integrated as

x = xs +
2V

√

2g(n − 1)
(
√

hs −
√

h) (6.48)

which after application of the final condition becomes

xf = xs +
2V

√

2g(n − 1)

√

hs. (6.49)

Finally, combining the results for the glide slope and the flare
gives the landing transition distance

xf − x0 = −
50

γg

−
V 2γg

2g(n − 1)
(6.50)
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6.7 Sample Calculations for the SBJ

6.7.1 Flap aerodynamics: no slats, single-slotted

flaps

The K factors for the SBJ (App. A) have been found from Figs. 6.10
through 6.29 and are listed in Table 6.2. Also, the values of ∆CLF

,
∆CDF

, and CLmax
have been calculated and are given in Table 6.3.

Table 6.2. Values of K Factors for the SBJ

Parameter K Parameter K

AW = 5.10 K1 = .88 bS/bW = 0.0 K11 = 0.0

(t/c)W = .09 K2 = .95 ΛleW
= 16.5 deg K12 = .92

AW = 5.10 K3 = .76 RNW
= 8.95106 K13 = 1.0

(t/c)W = .09 K4 = .96 M = .2 K14 = .98

cF /cW = .178 K5 = .80 dB/bW = .153, crW
/lB = .220 K15 = .01

δF = 10 deg K6 = .43 cF /cW = .178 K16 = .50

δF = 20 deg K6 = .73 δF /(δF )r = 10/60 = .17 K17 = .17

δF = 30 deg K6 = .89 δF /(δF )r = 20/60 = .33 K17 = .33

δF = 40 deg K6 = .97 δF /(δF )r = 30/60 = .50 K17 = .50

bF /bW = .560 K7 = .63 δF /(δF )r = 40/60 = .67 K17 = .67

ΛqcW
= 13 deg K8 = .92 bF /bW = .560 K18 = .62

cS/cW = 0.0 K9 = 0.0 ΛF = 5 deg K19 = .98

δS/(δS)r = 0.0 K10 = 0.0 dB/bW = .153 K20 = .84

Table 6.3. Values of ∆CLF
, ∆CDF

, and CLmax
for the SBJ

δF (deg) ∆CLF
∆CDF

CLmax

0 0 0 1.157

10 .1732 .00553 1.289

20 .2941 .01106 1.451

30 .3586 .01659 1.516

40 .3908 .02211 1.548
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6.7.2 Take-off aerodynamics: δF = 20 deg

The aerodynamic quantities needed for take-off are the airplane lift co-
efficient and the drag coefficient. The formulas are taken from Sec. 6.3
where all the symbols are defined. The lift coefficient is given by

CL = GL(h̄)CLα
(α − α0L) + ∆CLF

(δF ) (6.51)

The quantity h̄ is the height of the flap trailing edge above the ground.
The wing chord plane is 3.34 ft above the ground. The 1.38 ft wide flap
is deflected at 20 deg, so h̄ = 2.837 ft. Next, the angle of attack is taken
to be 0.0 deg. The lift coefficient calculation is as follows:

CL = (1.173)(4.08)(1.5/57.3) + .2941 = .4194 (6.52)

The drag coefficient is given by

CD = CD0 + ∆CDlg
+ ∆CDF

(δF )

+ GD(h̄)[K/f(δF )][CL − ∆CLF
(δF )]2

(6.53)

In the calculation of the landing gear drag, the take-off gross weight is
13,300 lb. Hence, the drag coefficient calculation is as follows:

CD = .023 + .02746 + .01106+

(.5096)(.073/.98)(.4194− .2941)2
(6.54)

6.7.3 Take-off distance at sea level: δF = 20 deg

The ground run distance for take-off is given by Eq. (6.31). The values
which are not obvious are W = 13,000 lb, µ = .02, CD − µCL

CLmax
= 1.451, VLO = 1.2(180)=216 ft/s and T=5,750 lb. The ground

run distance is then calculated to be xf

velocity is 216 ft/s and the angle of attack is such that n = 1.2. Hence,
Eq. (6.42) gives the transition distance to be xf = 712.2 ft. Finally, the
take-off distance is the sum of the ground run distance and the transition
distance. It is given by xf =2,559 ft.

6.7.4 Landing aerodynamics: δF = 40 deg

The aerodynamic quantities needed for landing are the lift coefficient
and the drag coefficient. The formulas are the same as those used for

= .06210

=.05371,

= 1,839 ft. In the transition, the
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take-off. With the flaps at 40 deg, the height of the trailing edge is h̄ =
2.182 ft. The lift coefficient calculation is given by

CL = 1.184(4.08)(1.5/57.3) + .3908 = .5173. (6.55)

Similarly, the drag coefficient calculation becomes

CD = .023 + .02746 + .02211

+ .4780(.073/.84)(.5173− .3908)2 = .07323.
(6.56)

Note that, with µ = .35, CD − µCL = −.1078.

6.7.5 Landing distance at sea level: δF = 40 deg

With the glide slope angle of γg = 3 deg, V =209 ft/s and n = 1.2,
Eq. (6.50) gives the transition distance xf = 1133 ft. Then, with a
high weight, W=13,000 lb, µ = .35, and idle thrust T=390 lb, Eq.
(6.35) gives the ground run distance of xf=2553 ft. Finally, adding the
transition distance and the ground run distance gives a landing distance
of xf=3686 ft.
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Fig. 6.10:  Flap Correction Factor K1

K1

AW
12840

1.6

1.2

0.8

0.4
0 0.1 0.2 0.3

0.6

0.8

1.0

1.2

(t/c)W

K2
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Fig.  6.14:  Flap Correction Factor K5
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Fig.  6.15:  Flap Correction Factor K6
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Fig.  6.18: Flap Correction Factor K9.

3

2

1

0

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.4 0.8 1.2

0.0

0.4

0.8

1.2

K10

Fig  6.19: Flap Correction Factor K10.
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Fig. 6.22:  Flap Correction Factor K13
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Fig.  6.26:  Flap Correction Factor K17
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Fig.  6.27:  Flap Correction Factor K18
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Problems

6.1 (a) Derive the equations for the take-off ground run time and fuel.
Show that

tf =
W

g

1

2ab
ln

a + bVLO

a − bVLO

where
a =

√

T − µW, b =
√

(1/2)ρS(CD − µCL).

Also show that
W0 − Wf = CTtf

(b) For the SBJ (Sec. 6.7.3), calculate the time and fuel for δF =
20 deg. Assume that C = 1.05 1/hr.

6.2 What lift coefficient should be designed into an airplane to obtain
the minimum take-off ground roll distance?

a. Show that Eq. (6.30) can be rewritten as

xf = −
W

2g(T − µW )

1

y
ln(1 − y)

where

y =
ρS(CD − µCL)V 2

LO

2(T − µW )

is the only term that contains CL. Then, the derivative of xf

with respect to CL set equal to zero gives

[

1

y2
ln(1 − y) +

1

y(1 − y)

]

dy

dCL

= 0.

For typical values of y (0 < y < .5), show that the only
solution of this equation is

dy

dCL

= 0

which with CD = CD(CL) leads to

dCD

dCL

= µ
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b. For the drag polar

CD = CDm
+ Km(CL − CLm

)2,

show that the optimal CL is given by

CL = CLm
+

µ

2Km

.

Then, for the take-off ground run of the SBJ (Sec. 6.7.3),
show that the optimal value of CL is CL=.5575. Since the
value of CL that is designed into the SBJ is CL=.4194, how
might the design be modified to get the optimal CL (see the
first of Eqs. 6.7)?

6.3 Derive the equation for the time during the take-off transition, that
is,

tf − t0 =

√

2hf

g(n − 1)
.

6.4 It is desired to determine the change in the velocity during the
take-off transition to verify the assumption of velocity constant on
the right-hand side of the equations of motion. Prove that V (h) is
given by

V = −
(a − b

√
h)2

b

where

a =
g

W

T − D
√

2g(n − 1)
, b =

g

V
.

Using the boundary conditions

h0 = 0, V0 = VLO, hf = 35ft,

show that the final velocity becomes

Vf = VLO + 2a
√

hf − bhf .

Calculate the final velocity for the SBJ in Section 6.7.3. What is
the percent change in the velocity over this transition?
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6.5 Consider the take-off transition of an airplane at constant load
factor n. Show that the airplane is operating at the constant angle
of attack

α = α0L +
nW/(q̄S) − ∆CLF

CLα

.

Next, show that the angle φ that the xb axis makes with the ground
during transition is

φ = γ + α = (1/V )
√

2g(n − 1)h + α.

At what angle of attack is the SBJ flying (Sec. 6.7.3)? What is
the inclination of the xb axis with respect to the ground during
transition.

6.6 Consider the take-off transition for the case where the flight path
angle is rotated from γ = 0 to the climb value γc which is held
constant over the remainder of the transition. Derive the equations
for the distance and the time, that is,

xf =
V 2γc

2g(n − 1)
+

hf

γc

, tf =
V γc

2g(n − 1)
+

hf

V γc

.

6.7 Analyze the effect of flaps on the take-off ground run distance of
the SBJ. Compute the take-off distance for δF = 0, 10, 20, 30, and
40 deg recalling that the lift-off speed changes with CLmax

which
changes with δF . If the take-off distance always decreases as δF

increases, why do you think that δF = 20 deg should be used for
take-off?

6.8 It is desired to find the constant thrust and the parabolic thrust
approximations a thrust table. For the two SBJ turbojets, thrust
versus velocity can be represented by the following table:

V (ft/s) Thrust (lb)

0 6,000

122 5,740

246 5,500

a. For the constant thrust approximation, there are more points
than unknowns. Hence, the fit is accomplished by minimizing
the sum of the squares of the errors, that is,

J = (T − T1)
2 + (T − T2)

2 + (T − T3)
2
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with respect to T . Here, T is the desired constant thrust, and
T1, T2, T3 are the values of the thrust at V1, V2, V3. Show that

T =
T1 + T2 + T3

3
.

Show that the constant thrust is T=5,750 lb.

b. Find the parabola T = PV 2 + QV + R that fits the data.
Show that

P = .0007953, Q = −2.228, R = 6, 000.

6.9 Consider the take-off ground run for the case where the thrust is
modeled as

T = PV 2 + QV + R.

a. Show that the ground run distance integral is given by

xf = −
W

g

∫

VLO

0

V dV

aV 2 + bV + c

where
a = −P + (1/2)ρS(CD − µCL)

b = −Q

c = −R + µW

b. Assuming that b2 − 4ac > 0, show that the ground run dis-
tance is given by

xf = −(W/g)[A(VLO) − A(0)]

where

A(V ) =
1

2a
ln

∣

∣

∣aV 2 + bV + c
∣

∣

∣ −
b

2aq
ln

∣

∣

∣

∣

∣

2aV + b − q

2aV + b + q

∣

∣

∣

∣

∣

where
q =

√
b2 − 4ac.

c. The thrust for the two SBJ turbojets can be modeled as

T = .0007953V 2
− 2.228V + 6, 000.
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For the take-off ground run with δF = 20 deg (Sec. 6.7.3),
compute a, b, c, q and compute the ground distance, that is,

a = .01400, b = 2.228, c = −5, 740, q = 18.1, xf = 2, 188ft.

How does this value of the ground run distance compare with
that obtained with constant thrust (Sec. 6.7.3)?

6.10 On take-off, a multi-engine airplane can lose an engine during the
ground run. Depending on the value of the decision speed, the
airplane leaves the ground and goes around to land or the airplane
is braked to a stop. The decision speed is the speed from which the
airplane can be stopped with brakes only and zero thrust within
the length of the runway. Derive the formula for calculating the de-
cision speed, and calculate it for the SBJ in Section 6.7.3 assuming
the field length is 6,000 ft. What does this result mean?

6.11 Derive the equation for the time during the landing transition, that
is,

tf − t0 = −
h0

V γg

−
V γg

2g(n − 1)

6.12 Derive the equation for the time during the landing ground run.

6.13 Consider the effect of thrust reversal on landing distance. Assume
that the thrust is reversed (T = Tr < 0) at a particular speed
Vr during the ground run. Derive the formula for the ground run
distance.

6.14 For a fighter aircraft that is equipped with thrust vector control,
the thrust magnitude T and the thrust direction relative to the
airplane ε0 can both be controlled. For take-off, it is desired to
find the angle ε0 which minimizes the take-off ground run distance.
Since the angle of attack is constant, minimizing with respect to
ε0 is the same as minimizing with respect to ε. In this analysis,
the assumption T sin ε << W is not made.

a. Assume that the thrust angle of attack ε is constant during
the ground run and that VLO is specified. Show that the
ground run distance is given by

xf = −
W

gρS(CD − µCL)
ln

[

1 −
ρS(CD − µCL)V 2

LO

2(T cos ε − µW + µT sin ε)

]

.
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b. Show that the thrust inclination that optimizes the ground
run distance is given by

tan ε = µ

which for µ = 0.02 is very small.

c. Show that the minimal ground run distance is given by

xf = −
W

gρS(CD − µCL)
ln

[

1 −
ρS(CD − µCL)V 2

LO

2(T
√

1 + µ2 − µW )

]

Note that since µ2 << 1 the ground run distance reduces to
that for ε = 0, that is, Eq. (6.31).

6.15 Relative to Prob. 6.14 assume that ε is constant but that the lift-
off speed is not prescribed. It is assumed that D and L do not
vary with ε.

a. Starting from Eqs. (6.17), show that the stall speed (R = 0)
is given by

Vstall =

√

√

√

√

2W (1 − τ sin ε)

ρSCLmax

where τ = T/W is the thrust to weight ratio.

b. Next, show that the take-off ground run distance satisfies the
equation

xf = −
W

gρS(CD − µCL)
ln

[

1 −
(CD − µCL)(k2/CLmax

)(1 − τ sin ε)V 2
TD

τ cos ε − µ(1 − τ sin ε)

]

.

c. Show that the optimal thrust angle is given by

sin ε = τ.

Discuss the meaning of this result as τ varies between 0 and
1.

d. Show that the optimal ground run distance is given by

xf = −
W

gρS(CD − µCL)
ln

[

1 −
(CD − µCL)(k2/CLmax

)
√

1 − τ 2

τ − µ
√

1 − τ 2

]

where τ is the thrust to weight ratio T/W . Note that if
τ 2 << 1, the ground run distance reduces to that of Eq.
(6.31). Hence, there is no advantage to inclining the thrust
for τ ’s less than around τ = 0.3 or so. What is the value of τ

for the SBJ?
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6.16 Consider the problem of minimizing the landing ground run dis-
tance with brakes and reverse thrust applied all the way from
V0 = VTD to Vf = 0 where VTD is given. Let ε denote the in-
clination of the forward-pointing engine centerline. With T < 0,
the thrust vector is actually pointing rearward. The assumption
that T sin ε << W is not made here.

a. Show that the landing ground run distance is given by

xf = −
W

gρS(CD − µCL)
ln

[

1 −
ρS(CD − µCL)V 2

TD

2(T cos ε − µW + µT sin ε)

]

.

where CD − µCL < 0.

b. Show that
tan ε = µ

minimizes the ground run distance. This result says that the
reverse thrust vector has a component into the ground. Does
it make sense?

6.17 Reconsider Prob. 6.16 for the case where VTD is not given, but
satisfies the relation

VTD = kVstall = k

√

√

√

√

2W (1 − τ sin ε)

ρSCLmax

.

where τ = T/W is the thrust to weight ratio. Note that, since
τ < 0, a positive ε increases the touchdown speed.

a. Show that the ground run distance is given by

xf = −
W

gρS(CD − µCL)
ln

[

1 −
(CD − µCL)(k2/CLmax

)(1 − τ sin ε)V 2
TD

τ cos ε − µ(1 − τ sin ε)

]

.

b. Show that the optimal thrust angle is given by

sin ε = τ.

Since τ < 0 (T < 0), this means that the reverse thrust vector
has an upward component (away from the ground). Does this
result make sense?
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PS and Turns

In the military aircraft mission profile (Chap. 1), there are three addi-
tional segments: acceleration at constant altitude, specific excess power
PS, and turns. Each of these segments involves a nonzero dynamic term.
Level flight acceleration (dash) is not considered here because the aircraft
must accelerate through the transonic region, and no analytical solution
can be obtained. Acceleration from one subsonic speed to another is
given as a homework problem. Specific excess power is a measure of the
ability of the airplane to change energy. It is considered first because
the equations of motion already exist. For turns, new equations must
be derived. Turns are used to estimate the amount of fuel needed for
combat maneuvering in the area of the target, as well as to change the
heading of an airplane.

7.1 Accelerated Climb

A high-performance airplane increases its speed during the climb. Hence,
to analyze the climb performance of such an airplane, it is necessary to
include the V̇ term in the equations of motion. To discuss an accelerated
climb, the following problem is studied: For a given power setting, find
the climb schedule that minimizes the time to climb from a given initial
altitude to a given final altitude.

In order to analyze this problem, the standard assumptions of
small thrust angle of attack, negligible thrust component normal to the
flight path, and small normal acceleration are made. In addition, the
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weight is assumed to be constant since the weight only changes 5-10%
during the climb. With these approximations, the equations of motion
for flight in a vertical plane reduce to

ẋ = V cos γ

ḣ = V sin γ

V̇ = (g/W )[T (h, V, P )−D(h, V, L) −W sin γ]

0 = L−W cos γ

Ẇ = −C(h, V, P )T (h, V, P ) .

(7.1)

These equations have two mathematical degrees of freedom. Since the
power setting is held constant, the remaining degree of freedom is asso-
ciated with the velocity.

Because the lift is not equal to the weight, these equations
cannot be solved analytically. The accelerated climb problem can be
solved analytically if the drag can be written as D(h, V,W ). This can
be accomplished in two ways. The first is to assume small flight path
inclination (cos γ = 1, sin γ = γ) so that L = W . However, high perfor-
mance airplanes can climb at high values of γ. The second approach is to
assume that that part of the drag which comes from L 6= W is negligible
with respect to the remainder. To see this, consider the parabolic drag
expression

D = (1/2)CD0ρSV
2 + 2KL2/(ρSV 2) (7.2)

From Eqs. (7.1) it is seen that

L2 = W 2 cos2 γ = W 2
−W 2 sin2 γ (7.3)

so that the drag can be rewritten as

D = (1/2)CD0ρSV
2 + 2KW 2/(ρSV 2)

−2KW 2 sin2 γ/(ρSV 2).
(7.4)

The next step is to show that the third term is negligible with respect
to the sum of the first two, that is,

2KW 2 sin2 γ/(ρSV 2)

(1/2)CD0ρSV
2 + 2KW 2/(ρSV 2)

<< 1. (7.5)
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This expression can be rewritten as

sin2 γ

1 + (V/V ∗)4
<< 1 (7.6)

where V ∗ is the speed for maximum lift-to-drag ratio. For comparison
purposes, consider the small flight path inclination assumption,

cos γ =
√

1 − sin2 γ ∼= 1 − (1/2) sin2 γ. (7.7)

Hence, for the cosine to be approximated by unity, it is necessary that

sin2 γ

2
<< 1. (7.8)

Since minimum-time climb speeds in quasi-steady flight are such that
are such that V > V ∗, approximation (7.6) is less restrictive than
approximation (7.8). In either case, however, it is possible to write
D = D(h, V,W ). For a parabolic drag polar, this means that the drag
is approximated by

D = (1/2)CD0ρSV
2 + 2KW 2/(ρSV 2). (7.9)

which is the drag for L = W .

The altitude and velocity equations are now given by

ḣ = V sin γ

V̇ = (g/W )[T (h, V, P )−D(h, V,W ) −W sin γ]
(7.10)

If sin γ is eliminated between these two equations, the resulting equation
can be solved for dt and integrated to give

tf − t0 =
∫

hf

h0

1 + (V/g)V ′

PS(h, V,W, P )
dh (7.11)

The symbol V ′ denotes the derivative dV/dh, and the initial and final
altitudes are given. Finally, PS denotes the specific excess power which
is defined as

PS =

[

T (h, V, P ) −D(h, V,W )

W

]

V (7.12)

Note that PS is the thrust power TV minus the drag power DV divided
by the weight.



164 Chapter 7. PS and Turns

With regard to the power setting, the minimum time climb
occurs with maximum P . With respect to V (h), Eq. (7.11) has the
following functional form:

tf − t0 =
∫

hf

h0

f [h, V (h), V ′(h)]dh (7.13)

The determination of the function V (h) which minimizes this integral
is a problem of the calculus of variations/optimal control theory. It is
beyond the scope of this text.

7.2 Energy Climb

While the original problem cannot be solved here, it is possible to trans-
form it into a form which can be solved. In this connection, the specific

energy, that is, the energy per unit weight,

ES =
mgh+ 1

2
mV 2

mg
= h+

V 2

2g
(7.14)

is introduced. From this expression, it is seen that

dES = [1 + (V/g)V ′]dh. (7.15)

Hence, if ES is made the variable of integration, the time to climb (7.11)
can be rewritten as

tf − t0 =
∫

ES
f

ES0

dES

PS(h, V,W, P )
(7.16)

where
h = ES − V 2/2g. (7.17)

Note that this integral has the form from which it is easy to
find the velocity profile V (ES) which minimizes the time to climb be-
tween the initial energy ES0 and the final energy ESf

. This V (ES) is
obtained by finding the velocity which maximizes PS at each value of
ES. Mathematically, the V (ES) which minimizes tf−t0 is obtained from
the condition

∂PS

∂V

∣

∣

∣

∣

∣

ES=Const

= 0. (7.18)
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From Eq. (7.14) and (7.1), it can be shown that

ĖS = PS, (7.19)

meaning that maximum PS is the same as maximum ĖS (maximum en-
ergy rate). Hence, the optimal climb schedule is that of maximum energy
rate. Recall that the optimal quasi-steady climb is flown at maximum
altitude rate (maximum rate of climb).

To solve Eq. (7.18), PS can be plotted versus V for given values
of ES as in Fig. 7.1. The locus of points at which PS is a maximum
yields V (ES) for the minimum-time climb.

It can be shown that the optimal velocity profile for climbing
from one altitude to another is the same as the optimal velocity profile
for climbing from one specific energy to another.

7.3 The PS Plot

Another way to look at this problem is to plot contours of PS = Const
in the V, h plane as shown in Fig. 7.2. This plot is known as the PS
plot. Note that the PS = 0 curve is the unrestricted, level flight envelope.
Finally, the optimal nonsteady climb (energy climb) is given by the locus
of points obtained by maximizing PS along an ES = Const line. Recall
that the optimal quasi-steady climb V (h) is the locus of points obtained
by maximizing PS along an h = Const line.

7.4 Energy Maneuverability

The equations of motion for three-dimensional flight are listed in Chap.
2. If it is assumed that ε is small, the ḣ and V̇ equations can be combined
to give ĖS = PS(h, V,W, P, L) since L 6= W . In terms of the load factor
n = L/W , this expression can be rewritten as

ĖS = PS(h, V,W, P, n) (7.20)

where

PS =

[

T (h, V, P ) −D(h, V,W, n)

W

]

V. (7.21)

 Energy Maneuverability7.4.
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Figure 7.1: Specific Excess Power Versus Velocity
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ES1
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Figure 7.2: The PS Plot
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A typical plot of PS versus Mach Number for a high-performance ma-
neuvering aircraft is shown in Fig. 7.3.

maneuvering flight is determined by its PS. Given two fighters engaged
in combat, the fighter with the higher PS will be able to out maneuver
the other.

In designing a new fighter, it is necessary to have a PS higher
than that of the expected threat. In analyzing an existing fighter, it is
useful to know the region of the flight envelope where it has a higher
PS than that of a potential threat. Then, air combat should only be
attempted at these values of h and V .

Figure 7.3: PS Plot for a Maneuvering Aircraft

7.5 Nonsteady, Constant Altitude Turns

One purpose of the turn is to change the heading of the airplane. Turns
occur in many parts of a typical flight path. On take-off, the pilot may
perform a climbing turn in order to line up with the heading at which the
climb to altitude is to be made. In flying along controlled airways, it is

.4            .8             1.2           1.6           2.0           2.4

M

PS

h, W, P given

n = 3

n = 5

n = 7

n = 1

(ft/s)

400
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0

-200

-400

The ability of an aircraft to change its energy in three-dimensional
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often necessary to change from one heading to another in order to change
airways. These turns are made at constant altitude or in the horizontal
plane. Only turns in a horizontal plane are considered here. Another
purpose of the turn is to estimate the fuel required for air combat. This
is done by computing the fuel needed to perform a given number of
subsonic and supersonic turns at constant altitude (horizontal turns).

In this study, only coordinated turns are considered, that is,
turns with zero sideslip angle where the velocity vector is always in the
plane of symmetry of the airplane. As a consequence, thrust, drag, and
lift are also in the aircraft plane of symmetry.

Fig. 7.4 shows the coordinate systems to be used in the deriva-
tion of the equations of motion. The ground axes system Exyz is shown,
but it is not in the plane of the turn. The x axis is in the original direc-

D

V

T cos

A

A'

( T sin   + L ) sin

x

E y

ψ

 ε

 ε μ

flight path

A A' plane

aircraft plane of symmetry

W

L

T sinε 

( T sin  + L ) sin ε μ

( T sin ε + L ) cos μ
μ

xh

yh

xw 

zh

zw

yw

Figure 7.4: Nomenclature for Turning Flight

tion of motion. The subscript h refers to the local horizon system, and
the subscript w denotes the wind axes system. Also, ψ is the heading

angle, and µ is the bank angle. Motion of the airplane is restricted to a
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horizontal plane.

The kinematic equations follow from the definition of velocity
(see Chap. 2), that is,

V = dEO/dt (7.22)

where EO is the position vector of the airplane relative to the ground.
It is given by

EO = xi + yj− hk = xih + yjh − hkh. (7.23)

Since ih, jh,kh, and h are constant,

dEO/dt = ẋih + ẏjh. (7.24)

With the velocity vector expressed as

V = uih + vjh (7.25)

equating like components in Eqs. (7.24) and (7.25) leads to the kinematic
equations of motion

ẋ = u, ẏ = v. (7.26)

The application of F = ma yields the dynamic equations. In
terms of the individual forces acting on the vehicle, Newton’s law is
written as

T + D + L + W = ma (7.27)

where a is the acceleration of the airplane relative to the ground axes
system which is an approximate inertial frame. From Fig. 7.4 it is seen
that the resultant force acting on the airplane is given by

F = [(T cos ε−D) cosψ − (T sin ε+ L) sinµ sinψ]ih

+ [(T cos ε−D) sinψ + (T sin ε+ L) sin µ cosψ]jh

+ [W − (T sin ε+ L) cosµ]kh

(7.28)

From the definition of acceleration

a = dV/dt (7.29)

and the expression (7.25) for V, the acceleration becomes

a = u̇ih + v̇jh. (7.30)
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Combining Eqs. (7.28) and (7.30) leads to the dynamic equa-
tions

(W/g)u̇ = (T cos ε−D) cosψ − (T sin ε+ L) sinµ sinψ

(W/g)v̇ = (T cos ε−D) sinψ + (T sin ε+ L) sin µ cosψ

0 = W − (T sin ε+ L) cosµ

(7.31)

where

V =
√
u2 + v2, tanψ = v/u. (7.32)

The equations of motion are the kinematic equations (7.26), the
dynamic equations (7.31), and the weight equation Ẇ = −CT . In the
dynamic equations, the thrust angle of attack is related to the airplane
angle of attack as

ε = ε0 + α. (7.33)

The equations of motion can be expressed in terms of the ve-
locity V and the heading angle ψ by writing

u = V cosψ, v = V sinψ. (7.34)

The corresponding equations of motion for nonsteady turning flight in a
horizontal plane are given by

ẋ = V cosψ

ẏ = V sinψ

V̇ = (g/W )[T cos(ε0 + α) −D]

ψ̇ = (g/WV )[T sin(ε0 + α) + L] sinµ

0 = [T sin(ε0 + α) + L] cosµ−W

Ẇ = −CT

(7.35)

In these equations, the angle of attack, the drag, the thrust, and the
specific fuel consumption satisfy functional relations of the form

α = α(h, V, L), D = D(h, V, L)

T = T (h, V, P ), C = C(h, V, P ).
(7.36)
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To study quasi-steady turns, the following approximations are made: (a)
V̇ negligible, (b) thrust angle of attack small, (c) negligible component
of the thrust normal to the flight path, and (d) weight constant on the
right hand sides of the equations of motion. With these approximations,
the equations of motion become

ẋ = V cosψ (7.37)

ẏ = V sinψ (7.38)

0 = T (h, V, P ) −D(h, V, L) (7.39)

ψ̇ = gL sinµ/WV (7.40)

0 = L cosµ−W (7.41)

Ẇ = −C(h, V, P )T (h, V, P ) . (7.42)

These six equations involve eight variables (four states x, y, ψ,W and
four controls V, P, L, µ) and, hence, two mathematical degrees of free-
dom. If it is assumed that the turn is flown at constant power setting,
there is only one mathematical degree of , and it is associated with the
velocity.

Since the altitude, weight, and power setting are given, Eq.
(7.39) can be solved for the load factor (n = L/W ) in terms of the
velocity as

n = n(V ). (7.43)

Then, Eq. (7.41) can be solved for the bank angle as

cosµ =
1

n
(7.44)

so that

sin µ =

√

1 −

(

1

n

)2

=

√
n2 − 1

n
. (7.45)

Hence, µ = µ(V ).

The objective of this study is to determine the distance, time
and fuel consumed during a turn from one heading angle to another.

7.6 Quasi-Steady Turns: Arbitrary Airplane
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Hence, ψ is made the variable of integration. Before continuing, it is
noted that the turn rate ψ̇ is given by Eq. (7.40) can be rewritten as

ψ̇ =
g
√
n2 − 1

V
(7.46)

so that ψ̇ = ψ̇(V ).

To determine the distance along the turn, the arc length along
an infinitesimal section of the turn is given by ds2 = dx2 + dy2. Taking
the square root and integrating with respect to time leads to

sf − s0 =
∫

tf

t0

√

ẋ2 + ẏ2 dt . (7.47)

Then, from Eqs. (7.37) and (7.38) and switching to ψ as the variable of
integration, the distance along the turn becomes

sf − s0 =
∫

ψf

ψ0

V

ψ̇(V )
dψ . (7.48)

Note that the integrand is the instantaneous turn radius

r =
V

ψ̇(V )
=

V 2

g
√
n2 − 1

. (7.49)

Next, the time to make the turn is given by

tf − t0 =
∫

ψf

ψ0

dψ

ψ̇(V )
, (7.50)

and the fuel consumed is

Wo −Wf =
∫

ψf

ψ0

C(V )T (V )

ψ̇(V )
dψ. (7.51)

Because the integrands of the distance, time and fuel contain
only the velocity and not the variable of integration, all of the optimal
turns are made at constant velocity. The minimum distance turn is flown
at the speed for minimum radius; the minimum time turn is flown at
the speed for maximum turn rate; and the minimum fuel turn is flown
at the speed for minimum CT/ψ̇. Note that if C and T are independent
of V , the minimum fuel turn and the minimum time turn are flown at
the same speed, that for maximum turn rate.
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For a constant velocity turn, the distance, time, and fuel inte-
grals can be evaluated to obtain

sf − s0 = r(V )(ψf − ψ0)

tf − t0 = 1
ψ̇(V )

(ψf − ψ0)

Wo −Wf = C(V )T (V )

ψ̇(V )
(ψf − ψ0) .

(7.52)

Finally, since the radius of the turn is constant, the trajectory is a circle
centered on the positive y axis. Recall that these results are for an
arbitrary conventional airplane (airframe and engines) flying a constant
altitude turn at constant velocity.

The turn performance has been computed for the subsonic busi-
ness jet (SBJ) of App. A. Results are presented for W = 11,000 lb, P =
0.98 (maximum continuous thrust), and several values of the altitude (h
= 0, 20,000, and 40,000 ft). First, the load factor, the bank angle, the
turn rate, and the turn radius are shown in Figs. 7.5 through 7.8. The
fuel is not shown because it is expected to look like the turn rate. Next,
the optimal speeds for the minimum time and distance turns are shown
in the flight envelope in Fig. 7.9. Finally, the maximum turn rate and
minimum turn radius are plotted in Figs. 7.10 and 7.11

7.7 Flight Limitations

In addition to the dynamic pressure, Mach number, and lift coefficient
limits shown in Fig. 7.9, there is also a structural design limit on the
load factor. While commercial jets might have a load factor limit of 2.5,
modern jet fighters are designed for a maximum load factor of 9.0. For
the SBJ, the maximum dynamic pressure is 300 lb/ft2; the maximum
Mach number is .81; the maximum lift coefficient is 1.24; and the maxi-
mum load factor is 4.5. Note that at sea level the SBJ is able to fly at
a load factor which exceeds the limit (Fig. 7.5).

From Eqs. (7.46) and (7.49), it is seen that the turn rate and
the turn radius are given by

ψ̇ =
g
√
n2 − 1

V
, r =

V 2

g
√
n2 − 1

(7.53)
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Figure 7.5: Load Factor (SBJ)
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Figure 7.6: Bank Angle (SBJ)
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Figure 7.11: Minimum Radius versus Altitude (SBJ)

where

n =
L

W
=
CLρSV

2

2W
=

CL

CLmax

(

V

Vstall

)2

. (7.54)

Hence, for the turn rate the limit lift coefficient (CLmax
) curve and the

limit load factor curve are defined by the relations

ψ̇ =
g

√
(V/Vstall)4−1

V

ψ̇ =
g

√
n2

lim
−1

V
.

(7.55)

For the turn radius, the corresponding curves are given by

r = V 2

g

√
(V/Vstall)4−1

r = V 2

g

√
n2

lim
−1

.
(7.56)

The turn rate limits at h = 20,000 ft have been added to Fig.
7.7 and are shown in Fig. 7.12. The speed at which the limit CL curve
and the limit load factor curve intersect is called the corner speed Vc and
is given by

Vc =
√
nlim Vstall =

√
nlim

√

2W

ρSCLmax

. (7.57)
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Figure 7.12: Corner Speed (SBJ)

Note that the corner speed increases with altitude.

If the turn rate capability exceeds the limit as it does at sea
level, the quickest turn is achieved by reducing the power setting and
flying at the corner speed. It is not unusual for fighters to exceed the
turn limits over a wide range of altitudes. Here, these airplanes achieve
the quickest and tightest turn by flying at the corner speed.

7.8

Since optimal turn performance of the SBJ occurs at speeds where Mach
number effects are negligible, the drag polar can be approximated by a
parabolic drag polar with constant coefficients, that is,

CD = CD0 +KC2
L

(7.58)

where CD0 and K are constants. The approximate thrust and specific
fuel consumption of the subsonic business jet can be modeled as (see

Quasi-steady Turns: Ideal Subsonic

Airplane
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Chap. 3)

T = T (h, P ) , C = C(h). (7.59)

For the parabolic drag polar, the expression for the drag is
given by

D = (1/2)CD0ρSV
2 + 2KL2/(ρSV 2) (7.60)

or because of the definition of the load factor, by

D = (1/2)CD0ρSV
2 + 2KW 2n2/(ρSV 2). (7.61)

Next, the nondimensional velocity

u = V/V ∗ (7.62)

is introduced where the velocity for maximum lift-to-drag ratio is given
by

V ∗ = (2W/ρSC∗

L
)1/2 , C∗

L
= (CD0/K)1/2 . (7.63)

Then, the drag can be rewritten as

D = (W/2E∗)(u2 + n2/u2) (7.64)

For level flight (n = 1), the quantity W/E∗ is the minimum drag for the
given altitude and weight. Hence, it is the minimum thrust required to
fly at constant altitude at the given altitude and weight, that is,

Tmin = W/E∗. (7.65)

Since the altitude and power setting are given, the thrust is fixed, and
a nondimensional thrust is introduced as

τ = T/Tmin. (7.66)

The load factor is obtained from the equation T −D = 0 which
can be written in terms of the nondimensional variables as

τ − (1/2)(u2 + n2/u2) = 0. (7.67)

The load factor is then given by

n = u
√

2τ − u2, (7.68)
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and the bank angle is given by

µ = arccos
1

u
√

2τ − u2
. (7.69)

From Eq. (7.53), it is seen that the turn rate in terms of the
nondimensional speed is given by

ψ̇V ∗

g
=
√

2τ − u2 − 1/u2. (7.70)

Then, the turn rate has a maximum of

ψ̇V ∗

g
=
√

2(τ − 1) (7.71)

at the velocity
u = 1. (7.72)

The turn radius (7.53) can be written in terms of the nondi-
mensional speed as

rg

V ∗2
=

u2

√
2τu2 − u4 − 1

(7.73)

and has the minimum value

rg

V ∗2
=
V ∗2

g

1
√
τ 2 − 1

(7.74)

when

u =
1
√
τ
. (7.75)

The CL and n limit curves follow from Eqs, (7.53) and (7.54).
The limit curves for the turn rate are given by

ψ̇V ∗

g
=

√
(CLmax

/C∗

L
)2u4

−1

u

ψ̇V ∗

g
=

g

√
n2

lim
−1

u
,

(7.76)

and the limit curves for the turn radius become

rg

V ∗2 = u2
√

(CLmax
/C∗

L
)2u4

−1

rg

V ∗2 = u2

g

√
n2

lim
−1
.

(7.77)
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Finally, the corner speed is given by

uc =
√
nlim

√

C∗

L
/CLmax

. (7.78)

Problems

7.1 Using the approximate integration approach of Chap. 4, derive
an expression for the minimum time to climb in terms of PSmax

at
n+ 1 points along the climb path.

7.2 For the energy climb, derive the equation for the distance traveled
while climbing from ES0 to ESf

. Assuming small flight path angle,
show that the minimum distance climb is flown at the V (ES) where

∂

∂V

(

PS

V

)

∣

∣

∣

∣

∣

ES=Const

= 0.

7.3 For the energy climb, derive the equation for the fuel consumed
while climbing from ES0 to ESf

. Show that the minimum fuel
climb is flown at the V (ES) where

∂

∂V

(

PS

CT

)

∣

∣

∣

∣

∣

ES=Const

= 0.

7.4 Find the velocity profile V (ES) that maximizes the distance in
nonsteady gliding flight (T = 0) with γ small and γ̇ negligible.
Assume an Ideal Subsonic Airplane (CD = CD0 + KC2

L
) and an

exponential atmosphere (ρ = ρsexp(−hλ)). First, show that the
distance is given by

xf − x0 =
∫

Esf

Es0

V

−PS
dES =

∫

Esf

Es0

W

D(ES, V )
dES

so that maximum distance occurs when D is a minimum as in

∂D

∂V

∣

∣

∣

∣

∣

ES=Const

= 0.

Next, show that

∂D

∂V

∣

∣

∣

∣

∣

ES=Const

=

(

CD0S −
KW 2

q̄2S

)

∂q̄

∂V

∣

∣

∣

∣

∣

ES=Const
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and that, with h = ES − V 2/2g,

∂ρ

∂V

∣

∣

∣

∣

∣

ES=Const

= ρV

(

V 2

2λg
+ 1

)

> 0.

Hence, minimum drag occurs when

CD0S −
KW 2

q̄2S
= 0 ⇒ q̄ =

W

SC∗

L

or when

(1/2)ρse
−

(

ES−V
2

/2g

λ

)

V 2 =
W

SC∗

L

which is to be solved for V (ES).

7.5 Consider the constant lift coefficient nonsteady glide of a low-speed
airplane, CD = CD(CL), and assume that the flight path is shallow
(γ small) and smooth (γ̇ negligible). Show that

V =

√

2W

ρSCL

xf − x0 = E(CL)(ES0 − ESf
)

along the flight path. Hence, if the initial and final specific energies
are prescribed maximum range occurs when the lift coefficient is
that for maximum lift-to-drag ratio.

7.6 Consider the constant altitude deceleration of the Ideal Subsonic
Airplane in gliding flight (T = 0) from initial velocity V0 to fi-
nal velocity Vf . Since the drag polar is parabolic with constant
coefficients, show that the distance traveled is given by

xf − x0 =
V ∗2E∗

2g
[F (u0) − F (uf)]

where u = V/V ∗ and where

F (u) = ln(1 + u4) .
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7.7 Consider the constant altitude acceleration of the Ideal Subsonic
Airplane at constant power setting from initial velocity V0 to final
velocity Vf . Assuming that the weight is constant, show that the
distance traveled is given by

xf − x0 =
V ∗2E∗

g
[A(u0) − A(uf)]

where

A(u) =
1

u2
1 − u2

2

[

u2
1 ln(u2

1 − u2) − u2
2 ln(u2

− u2
2)
]

where

u1 =
√

τ +
√
τ 2 − 1 , u2 =

√

τ −
√
τ 2 − 1

and where τ = T/(W/E∗).

7.8 A constant velocity turn is characterized by a constant turn rate
ψ̇ so that ψ = ψ̇t . Integrate the equations of motion (7.56) and
(7.57) to show that the trajectory is the circle

x2 + [y − (V/ψ̇)]2 = (V/ψ̇)2

where V/ψ̇ is the radius. Sketch the turn in the xy plane.

7.9 For a turn of the ISA, show that the load factor has the maximum
value

n = τ

which occurs when

u = τ1/2 .

7.10 For a turn of an ISA, show that the bank angle has the maximum
value

µ = arccos(1/τ)

when
u = τ 1/2.
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7.11 NASA uses a large jet aircraft, affectionately called the Vomit

g” without having to put them in orbit. Actually, astronauts in
orbit are not weightless”, nor are they in zero g.” In earth orbit,
g is roughly the same as it is on earth. The proper name for this
state is free fall.” From the equations of motion for nonsteady
flight over a flat earth, Sec. 2.5, it is seen that the airplane has
two controls, the angle of attack and the power setting. How should
the airplane be flown so that its trajectory is part of an orbit. How
should the trajectory be started to get the highest amount of free
fall time.

Ans. The airplane should be flown such that T cos ε−D = 0 and
T sin ε + L = 0. The initial flight path angle should be as high as

weightlessness” or zero

possible.

“ “

“ “

“

Comet, to give people the experience of



Chapter 8

6DOF Model: Wind Axes

In Chap. 2, the translational equations have been uncoupled from the
rotational equations by assuming that the aircraft is not rotating and
that control surface deflections do not affect the aerodynamic forces. The
scalar equations of motion for flight in a vertical plane have been derived
in the wind axes system. These equations have been used to study
aircraft trajectories (performance). If desired, the elevator deflection
history required by the airplane to fly a particular trajectory can be
obtained by using the rotational equation.

In this chapter, the six-degree-of-freedom (6DOF) model for
nonsteady flight in a vertical plane is presented in the wind axes system.
Formulas are derived for calculating the forces and moments. Because
it is possible to do so, the effect of elevator deflection on the lift is
included. These results will be used in the next chapter to compute the
elevator deflection required for a given flight condition. Finally, since
the equations for the aerodynamic pitching moment are now available,
the formula for the drag polar can be improved by using the trimmed
polar. The aerodynamics of this chapter is based on Ref. Ho, which for
straight-tapered wings has been summarized in Refs. Ro1 and Ro2.

8.1 Equations of Motion

The translational equations for nonsteady flight in a vertical plane in
the wind axes system are given by Eqs. (2.24). The coordinate systems,
the angles, the forces, and the moment about the center of gravity are



186 Chapter 8. 6DOF Model: Wind Axes

shown in Fig. 8.1 where Θ is the pitch angle and M is the resultant

Figure 8.1: Forces and Moment

external moment (pitching moment). From dynamics, it is known that
the pitching motion of an airplane is governed by the equation

M = IyyΘ̈ (8.1)

where Iyy is the mass moment of inertia and Θ̈ is the angular accelera-

tion, both about the yw axis. If the pitch rate Q = Θ̇ is introduced, this
second-order equation can be replaced by two first-order equations:

Θ̇ = Q

Q̇ = M/Iyy.
(8.2)

In general, the moments acting on an airplane are due to the
thrust force and the aerodynamic force being moved to the center of
gravity and due to the gyroscopic effects of the rotating masses in the
engines (Ref. Mi). For the longitudinal motion of a conventional air-
plane, the gyroscopic moment vector lies in the vertical plane. Hence,
it causes small rotations about the roll and yaw axes (lateral-directional

T

L

D

xw

xb

zw
zb

Θ
O

M

xh

zh

α
ε0

γ

W

γ

γ

γ
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motion). For small perturbations, lateral-directional motion does not
cause longitudinal motion. Therefore, the gyroscopic moment does not
affect longitudinal motion so that the pitching moment is given by

M = MT + MA. (8.3)

The complete set of the 6DOF equations of motion for flight in
a vertical plane in the wind axes system is given by

ẋ = V cos γ

ḣ = V sin γ

V̇ = (g/W )[T cos(α + ε0) − D − W sin γ]

γ̇ = (g/WV )[T sin(α + ε0) + L − W cos γ]

Ẇ = −CT

Θ̇ = Q

Q̇ = M/Iyy

(8.4)

where from Fig. 8.1

Θ = γ + α. (8.5)

These equations contain several quantities (D, L, T, C) which are func-
tions of variables already present.

If the airplane is pitching nose up about the center of gravity,
the downward motion of the tail increases its angle of attack. This
increases the lift of the horizontal tail and, in turn, opposes the rotational
motion. This effect is modeled by including the pitch rate Q in the
aerodynamics. There is a wing contribution from the wing, but it has
been modeled in the literature by increasing the tail contribution by
10%.

It is assumed that the flow field around the airplane instanta-
neously adjusts itself to angle of attack and velocity changes. This is
possible because these changes are not made rapidly. The deflection of
the free stream by the wing, called downwash, moves from the wing to
the horizontal tail in a finite time. This is modeled by assuming that
the aerodynamics is a function of α̇.

The effects of Q and α̇ on the thrust, specific fuel consumption,
drag, and thrust moment are neglected. If the effect of elevator deflection
δE on the drag is also neglected, the propulsion and aerodynamic terms
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in the equations of motion satisfy the following functional relations:

T = T (h, V, P ), C = C(h, V, P )

D = D(h, V, α), L = L(h, V, α, δE , Q, α̇)

MT = MT (h, V, P ), MA = MA(h, V, α, δE, Q, α̇).

(8.6)

Eqs. (8.4) and (8.5) involve ten variables (eight states x,h,V ,γ,
W ,Θ, Q,α and two controls P and δE). Hence, there are two mathe-
matical degrees of freedom. To solve these equations, two additional
equations involving existing variables must be provided. An example is
specifying the two control histories P = P (t) and δE(t), which are the
controls available to the pilot, depending on the design of the horizontal
tail.

Given the aerodynamics and propulsion characteristics of an
airplane, these equations can be used to perform a numerical simulation
of its pitching motion. One use of such a simulation is to study the
stability characteristics of an airplane and its response to control and
gust inputs throughout the flight envelope. Since the motion is only of
interest for a short period of time, the atmospheric properties and the
mass properties can be assumed constant. As a result, the kinematic
equations and the mass equation uncouple from the system, and only
the dynamic equations are relevant.

8.2 Aerodynamics and Propulsion

To derive formulas for predicting the aerodynamics, it is necessary to
write the forces and moments in coefficient form. First, the lift and
aerodynamic pitching moment satisfy the functional relations

CL = CL(α, δE, M, c̄Q/2V, c̄α̇/2V )

CA

m
= CA

m
(α, δE, M, c̄Q/2V, c̄α̇/2V ).

(8.7)

where M is the Mach number. In the derivations that follow, it is shown
that CL and CA

m are linear in every variable except Mach number. Hence,
CL and CA

m
are written as

CL = CL0(M) + CLα
(M)α + CLδE

(M)δE (8.8)

+ CLQ
(M)(c̄Q/2V ) + CLα̇

(M)(c̄α̇/2V )
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CA

m = CA

m0
(M) + CA

mα
(M)α + CA

mδE

(M)δE (8.9)

+ CA

mQ
(M)(c̄Q/2V ) + CA

mα̇
(M)(c̄α̇/2V )

where CLα
, for example, denotes the partial derivative of CL with respect

to α. Also, by definition

CLQ

∆
=

∂CL

∂ c̄Q

2V

, CA

mQ

∆
=

∂CA

m

∂ c̄Q

2V

, CLα̇

∆
=

∂CL

∂ c̄α̇

2V

, CA

mα̇

∆
=

∂CA

m

∂ c̄α̇

2V

. (8.10)

For airplanes with moveable horizontal tails, it is possible to separate
the iH term from CL0 and CA

m0
. Then, iH would appear as a variable

along with δE .

The effects of δE , Q, and α̇ on the drag are negligible so that
its functional relation is given by

CD = CD(α, M). (8.11)

For a parabolic drag polar, this functional relation has the form

CD = C0(M) + C1(M)α + C2(M)α2. (8.12)

Finally, the nondimensional quantities CT and CT

m
are not re-

ally force and moment coefficients in the sense that they are not functions
of other nondimensional quantities. These quantities satisfy functional
relations of the form

CT = CT (h, M, P ), CT

m = CT

m(h, M, P ). (8.13)

In the remainder of this chapter, formulas are developed for the
Mach number dependent terms. However, because the derivation of the
pitching moment follows a different approach than the derivation of the
lift and drag for trajectory analysis, it is necessary to start over. First,
airfoils, wings, wing-body combinations, downwash at the horizontal
tail, and control surfaces are discussed. Next, formulas are derived for
airplane lift and airplane pitching moment for quasi-steady flight (Q =
α̇ = 0). Subsequently, formulas are developed for the Q and α̇ terms
(nonsteady flight). Finally, airplane drag is discussed, as is the trimmed
drag polar.
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8.3 Airfoils

An airfoil (two-dimensional wing) at an angle of attack experiences a
resultant aerodynamic force, and the point on the chord through which
the line of action passes is called the center of pressure (Fig. 3.6). The
resultant aerodynamic force can be resolved into components parallel
and perpendicular to the velocity vector, that is, the drag and the lift.
Unfortunately, the center of pressure varies with V and α. The forces
can be replaced by forces and a moment at a fixed point. In trying to
select the best fixed point, it has been discovered that a point on the
chord exists where the moment is independent of α. This point is called
the aerodynamic center, and it is located approximately at the quarter
chord at subsonic speeds. Hence, the procedure for representing the
resultant aerodynamic force becomes that of Fig. 8.2.

α

Aerodynamic Center (ac)

cd

cmac

cl

V

Figure 8.2: Airfoil Aerodynamic Center

In general,

α = α(cl, M), cd = cd(cl, M), cmac
= cmac

(M) (8.14)

where M is the Mach number. By holding M constant and varying the
lift coefficient, the above quantities vary as in Fig. 8.3. Away from the
maximum lift coefficient, it is seen that angle of attack varies linearly
with the lift coefficient, the drag coefficient varies quadratically with cl,
and the pitching moment about the aerodynamic center is independent
of cl.

A set of data for the NACA 64-109 airfoil (Ref. AD or Ho)
is presented in Table 8.1. While some of the numbers are presented in
terms of degrees, the use of the numbers in all formulas is in radians.
Only the lift-curve slope varies with Mach number at subsonic speeds.
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cl                              cl                                    cl

clα

cl i

α0                        a                                    cd                -cm0 
        -cmac

cl max

Figure 8.3: Airfoil Aerodynamic Characteristics (M given)

Table 8.1: Data for the NACA 64-109 Airfoil

Parameter M = 0 Variation with

Mach number

α0 -0.5 deg negligible

clα 0.110 deg−1 clα =
(clα

)M=0
√

1−M2

ac/c 0.258 negligible

cmac
-0.0175 negligible

8.4 Wings and Horizontal Tails

The aerodynamic characteristics of a three-dimensional wing are shown
in Fig. 8.4. In stability and control studies, the drag plays a small
role relative to the lift. Hence, the aerodynamic parameters of a wing
are represented by the aerodynamic center, the lift coefficient, and the
pitching moment coefficient about the aerodynamic center.

The aerodynamic center of a half wing (Fig. 8.5) is defined in
terms of an equivalent rectangular wing, that is, a rectangular wing which
has the same planform area, the same lift, the same moment about the
y axis, and the same moment about the x axis. Then, the aerodynamic
center of the equivalent rectangular wing is the aerodynamic center of
the original wing, and the chord of the equivalent rectangular wing is
the mean aerodynamic chord. For an straight-tapered wing, the location
of the aerodynamic center ξ, η and the mean aerodynamic chord c̄ are
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CL

CD

ac

Cmac

α

V

y

x

Figure 8.4: Aerodynamic Parameters of a 3D Wing

y

x

ξ x(y)

Mean aerodynamic chord

Line of
airfoil ac's

Aerodynamic 
center

ξ

η

Figure 8.5: Aerodynamic Center and Mean Aerodynamic Chord

given by

ξ = pc̄ + η tanΛle, η =
b

6

1 + 2λ

1 + λ
, c̄ =

2cr

3

1 + λ + λ2

1 + λ
(8.15)

where p is the location of the airfoil ac as a fraction of the chord (p ∼= .25)
and Λle is the leading edge sweep. These results are for a half wing. For
a whole wing, the aerodynamic center and the mean aerodynamic chord
are located on the x axis. The aerodynamic center does not change
location with Mach number at subsonic speeds. At transonic speeds, it
transitions from the subsonic quarter-chord location to the supersonic
half-chord location.
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There is a simple graphical procedure for finding ξ, η, and c̄ as
shown in Fig. 8.6. The algorithm is as follows:

1. Add the tip chord behind the root chord to locate point A.

2. Add the root chord in front of the tip chord to locate point B.

3. Connect points A and B with a straight line.

4. Locate the half-root-chord point C and the half-tip-chord point D,
and connect them with a straight line.

5. Where the lines AB and CD intersect, that is, at E, draw the
chord. This is the mean aerodynamic chord.

6. Where the mean aerodynamic chord and the line of airfoil aero-
dynamic centers intersect is the location of the wing aerodynamic
center.

ξ

η

ac line (~ quarter chord line)

Half-chord line

A

B

C

D

E

ct

cr

Figure 8.6: Graphical Procedure

The lift coefficient CL = CLα
(α − α0L) is determined by α0L

and CLα
, which are given by (Sec. 3.5)

α0L = α0 (8.16)
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and

CLα
=

πA

1 +
√

1 + (A/2κ)2[1 + tan2 Λhc − M2]
. (8.17)

The zero-lift angle of attack does not change with Mach number, and
the lift-curve slope increases.

The airfoil pitching moment about the aerodynamic center does
not vary with the angle of attack. For a wing with the same airfoil
shapes, cmac

does not vary along the span so that the wing value equals
the airfoil value. Hence,

Cmac
= cmac

. (8.18)

At subsonic speeds, Cmac
does not vary with the Mach number.

The addition of the body to the wing to form the wing-body

combination has three effects: the ac moves forward, CLα
increases, and

Cmac
decreases. In general, these effects are small and can be omitted

in a first calculation. In other words, the aerodynamic characteristics of
the wing-body combination can be taken to be those of the entire wing
alone (Ref. Ne, Fig. 2.17, p. 5.8, Ref. Pa, p. 239, or Ref. Ro2, p. 3.45)

8.5

The tail is in the flow field behind the wing. To produce lift, the wing
must deflect the free stream downward. In addition, the wing slows
that part of the air stream which passes near the wing. Hence, the tail
operates in a flow field which is deflected through an angle ε from the free
stream and which is moving at a slightly lower speed. The downwash at
the horizontal tail depends on the location of the horizontal tail relative
to the wing.

To calculate the downwash angle at the horizontal tail (ε), it
is assumed to vary linearly with the angle of attack as

ε = εα(α − α0L) (8.19)

The slope εα of this line behaves like the lift-curve slope CLα
and is

assumed to satisfy the relation

εα = (εα)M=0
CLα

(CLα
)M=0

. (8.20)

Downwash Angle at the Horizontal Tail
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In turn, the zero-Mach-number value is approximated by

(εα)M=0 = 4.44(KAKλKH

√

cos Λqc )1.19 (8.21)

where Λqc is the quarter-chord sweep angle and where

KA =
1

A
−

1

1 + A1.7
, Kλ =

10 − 3λ

7
, KH =

1 −
hH

b

3

√

2lH

b

. (8.22)

The quantities lH and hH locate the horizontal tail relative to the wing
as shown in Fig. 8.7. The quantity lH is the distance along the mean

Wing aerodynamic
center

c

Horizontal tail
aerodynamic center

cH

lH

hH

Figure 8.7: Location of the Horizontal Tail

aerodynamic chord of the wing from the wing aerodynamic center to the
horizontal tail aerodynamic center. Also, hH is the distance of the tail
aerodynamic center above the line of c̄.

The decrease in the speed of the air stream behind the wing is
taken into account by introducing the tail efficiency factor

ηH =
q̄H

q̄
= 0.9. (8.23)

In this formula, q̄H is the dynamic pressure in front of the horizontal
tail and q̄ is the dynamic pressure in front of the wing (free stream
dynamic pressure). In an incompressible flow, this assumption represents
a 5% change in the velocity from in front of the wing to in front of the
horizontal tail.
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8.6 Control Surfaces

The control for the pitching motion of a conventional airplane is the
elevator which is the aft portion of the horizontal tail. A positive elevator
deflection is trailing edge down and leads to a negative pitching moment.

A cambered airfoil with a control flap is shown in Fig. 8.8 with
a positive flap deflection. The aerodynamics of such a wing section are
presented schematically in Fig. 8.9. Note that cl varies linearly with α

for a nonzero δ, that α0 decreases as δ increases, that clα does not change,
the maximum lift coefficient increases, and that cmac

decreases. The
location of the aerodynamic center does not change with flap deflection.

α

δ

V

Figure 8.8: Airfoil with Deflected Flap

cl                              cl                                    cl

   α                                    cd                                -cmac

δ > 0

δ = 0

δ < 0

δ = 0
δ < 0

δ = 0
δ > 0

δ < 0
δ > 0

Figure 8.9: Effects of Flap on Airfoil Aerodynamics (M given)

For moderate control deflections, the lift coefficient varies lin-
early with δ. Hence, it is assumed that

cl = cl0 + clαα + clδ
δ (8.24)

where cl0 , clα and clδ
are known for a particular airfoil. For horizontal

tails that must produce downward lift as effectively as upward lift, the
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airfoils are symmetric so that cl0 is zero. Next, Eq. (8.21) is rewritten
in the form

cl = cl0 + clα(α + τ̄ δ) (8.25)

where τ̄ = clδ
/clα is called the airfoil control effectiveness and is plotted

in Fig. 8.10 as a function of the flap size. The control effectiveness does

τ

c

0          .2          .4          .6          .8

cf 

cf / c 

0

.2

.4

.6

.8

τ  = .962 (c
f 
/c)

1/2
 - .0321

_

Figure 8.10: Airfoil Control Effectiveness

not change with Mach number at subsonic speeds.

For a wing with a control surface, a positive control surface
deflection leaves the aerodynamic center unchanged, decreases α0L, does
not change CLα

, and decreases Cmac
. For moderate control surface de-

flections, the lift is linear in δ and is approximated by

CL = CLo
+ CLα

(α + τδ) (8.26)

The control surface effectiveness τ is given by

τ =
2

S

∫ b

2

0
τ̄(y)c(y) dy (8.27)

where τ̄(y) is assumed to be constant over that part of the wing which
has the control surface and zero over the remainder of the wing. Hence,

τ =
Sc

S
τ̄ (8.28)
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where Sc is the planform area of the wing associated with the control
surface (see Fig. 8.11). For a horizontal tail with a full-span elevator,
Sc = S so that τ = τ̄ .

Sc / 2

Figure 8.11: Definition of Sc

For a horizontal tail with a symmetric airfoil, CmacH
is pro-

portional to the elevator deflection. However, its effect on the airplane
pitching moment is an order of magnitude less that of CmacW

, so it is
not discussed.

A summary of how basic aerodynamic parameters vary with
control deflection and Mach number is presented in Table 8.2.

Table 8.2: Changes with Control Deflection and Mach Number

Subsonic Subsonic Changes Changes

airfoil wing with δ with M

ac ac no no

α0 α0L yes no

clα CLα
no yes

cmac
Cmac

yes no

τ̄ τ no no

8.7 Airplane Lift

The coordinate system and other information for computing the lift and
the aerodynamic pitching moment of an airplane are shown in Fig. 8.12.
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The wing-body configuration is represented by its forces and moment

- α0LWB

- α0LW

iW

xb

xw

α

V

LWB

DWB

MacH

MacWB

LH

DH

// xb

// xw

// xb

XacWB

Xcg

XacH

iH αH

ε

VH

cg
α

Figure 8.12: Coordinate System for Forces and Moments

acting at the aerodynamic center of the wing mean aerodynamic chord,
which is at an incidence iW with respect to the xb axis. It is recalled that
in all calculations, wing-body quantities are replaced by the correspond-
ing wing quantities. The horizontal tail is represented by its forces and
moment acting at the aerodynamic center of the horizontal tail mean
aerodynamic chord. It has an incidence iH relative to the xb axis. The
angle of attack of the airplane (wing-body combination) is the angle be-
tween the xb axis and the xw axis which is along the velocity vector. For
the horizontal tail, the angle of attack is seen to be αH = α + iH − ε.
The coordinate X which locates the horizontal tail is measured from the
leading edge of the wing mean aerodynamic chord.

In order to derive the equation for CL, consider the components
of the airplane. If small angles are assumed and contributions of the
drags are neglected, the lift of the airplane is given by

L = LWB + LH . (8.29)

In order to have the horizontal tail behave as a wing in a free stream,
its lift coefficient is formed by dividing by the dynamic pressure at the
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horizontal tail and by the planform area of the horizontal tail, that is,

CLH
=

LH

q̄HSH

. (8.30)

As a consequence, if Eq. (8.29) is divided by q̄S to form the airplane lift
coefficient, the following result is obtained:

CL = CLWB
+ CLH

ηH

SH

S
(8.31)

where the tail efficiency factor ηH is defined in Eq. (8.23).

The wing-body lift coefficient can be expressed as

CLWB
= CLαWB

(αWB − α0LWB
) (8.32)

where
αWB

∆
= α (8.33)

and
α0LWB

= −(iW − α0LW
) (8.34)

from Fig. 8.12. For a straight-tapered wing with the same airfoil shapes
and no twist, α0LW

= α0 which is the zero-lift angle of attack of the
airfoil. The combination of Eqs. (8.32) through (8.34) leads to

CLWB
= CL0WB

+ CLαWB
α (8.35)

where
CL0WB

= CLαWB
(iW − α0LW

) (8.36)

and
CLαWB

= CLαW
, α0LW

= α0 (8.37)

because the aerodynamic characteristics of the wing-body combination
are being approximated by those of the wing alone.

Next, from Eq. (8.26), the horizontal tail lift coefficient can be
written as

CLH
= CL0H

+ CLαH
(αH + τEδE). (8.38)

Since a horizontal tail should be effective in producing up and down lift,
its airfoil shape is symmetric, and CL0H

is zero. From Fig. 8.11, it is
seen that the angle of attack of the horizontal tail is given by

αH = α + iH − ε. (8.39)
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The downwash angle at the horizontal tail is given by Eq. (8.19) to be

ε = εα(αWB − α0LWB
) = εα(α + iW − α0LW

) = ε0 + εαα (8.40)

where
ε0 = εα(iW − α0LW

). (8.41)

Finally, the lift coefficient of the horizontal tail becomes

CLH
= CLα

H
[iH − ε0 + (1 − εα)α + τEδE ]. (8.42)

For the airplane, the combination of Eqs. (8.31), (8.35), and
(8.42) leads to

CL =
[

CLαWB
(iW − α0LW

) + CLαH
(iH − ε0)ηH

SH

S

]

+
[

CLαWB
+ CLαH

(1 − εα)ηH
SH

S

]

α

+
[

CLαH
τEηH

SH

S

]

δE

(8.43)

The form of Eq. (8.43) is

CL = CL0(M) + CLα
(M)α + CLδE

(M)δE , (8.44)

where

CL0(M) = CLαWB
(iW − α0LW

) + CLαH
(iH − ε0)ηH

SH

S
(8.45)

CLα
(M) = CLαWB

+ CLαH
(1 − εα)ηH

SH

S
(8.46)

CLδE

(M) = CLαH
τEηH

SH

S
(8.47)

For the SBJ (App. A) at M= 0.6, straightforward calculations
lead to CL0 = .0835, CLα

= 5.16, and CLδE

= .430.

8.8 Airplane Pitching Moment

The airplane pitching moment is the sum of the thrust pitching moment

and the aerodynamic pitching moment. The aerodynamic pitching mo-
ment is discussed first, followed by the thrust pitching moment and the
airplane pitching moment.
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8.8.1 Aerodynamic pitching moment

In Fig. 8.12, moment arms are measured in a coordinate system whose
origin is at the leading edge of the wing mean aerodynamic chord. Be-
cause iW is very small, the distance X can be measured along the mean
aerodynamic chord or along the xb axis. In either case, it is positive
toward the tail.

The moments due to the drags of the wing-body combination
and the horizontal tail are neglected because they are small relative to
the moments of the lifts. Also, the horizontal tail moment about the
aerodynamic center due to δE is neglected. After these assumptions are
taken into account, the aerodynamic pitching moment about the center
of gravity becomes

MA = LWB(Xcg − XacWB
) + MacWB

− LH(XacH
− Xcg). (8.48)

In coefficient form, that is, after dividing through by q̄Sc̄ and accounting
for Eq. (8.30), this equation becomes

CA

m
= CLWB

(X̄cg − X̄acWB
) + CmacWB

− CLH
ηH

SH

S
(X̄acH

− X̄cg) (8.49)

where X̄ is defined as

X̄ =
X

c̄
. (8.50)

Eq. (8.49) in combination with the equations for CLWB
and CLH

leads
to the following expression for CA

m
:

CA
m =

[

CLαWB
(iW − α0LW

)(X̄cg − X̄acWB
) + CmacWB

− CLαH
(iH − ε0)ηH V̄H

]

+
[

CLαWB
(X̄cg − X̄acWB

) − CLαH
(1 − εα)ηH V̄H

]

α

+
[

−CLα
H
τEηH V̄H

]

δE

(8.51)

Here, V̄H is the horizontal tail volume coefficient which is defined as

V̄H =
SH

S
(X̄acH

− X̄cg). (8.52)

and varies with cg location.

The form of Eq. (8.51) is

CA

m
= CA

m0
(M) + CA

mα
(M)α + CA

mδE

(M)δE (8.53)
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where

CA

m0
(M) = CLα

WB
(iW − α0LW

)(X̄cg − X̄acWB
) + Cmac

WB

− CLαH
(iH − ε0)ηH V̄H (8.54)

CA

mα
(M) = CLαWB

(X̄cg − X̄acWB
) − CLαH

(1 − εα)ηH V̄H (8.55)

CA

mδE

(M) = −CLαH
τEηH V̄H . (8.56)

While not explicitly shown, all of these quantities is also a function of
the cg position.

For the SBJ at M= 0.6 and X̄cg = .30, straightforward cal-
culations lead to V̄H = .612, CA

m0
= .0895, CA

mα
= -1.09, and CA

mδE

=
-1.13.

In general, the aerodynamic center is defined as that point
about which the pitching moment is independent of the angle of attack.
If the center of gravity is imagined to be an arbitrary reference point,
then Cm is independent of α if X̄cg is such that the coefficient of α, that
is, CA

mα
, is zero. This cg position is then the aerodynamic center of the

airplane and is denoted by X̄ac. Hence, if X̄cg in Eq. (8.55) is replaced
by X̄ac (recalling the definition (8.52) of V̄H) and CA

mα
is set equal to

zero, the result can be solved for X̄ac as follows

X̄ac =
CLαWB

X̄acWB
+ CLαH

(1 − εα)ηH
SH

S
X̄acH

CLαWB
+ CLαH

(1 − εα)ηH
SH

S

. (8.57)

The location of the aerodynamic center does not change with Mach
number.

For the SBJ at M= 0.6, it is seen that X̄acWB
= 0.258, X̄acH

=
2.93, and X̄ac = 0.512.

For an arbitrary center of gravity location (X̄cg 6= X̄ac), the
expression for CA

mα
can be rewritten as

CA

mα
= CLα

(X̄cg − X̄ac). (8.58)

Since the lift-curve slope is positive. the sign of CA
mα

depends on the
location of the center of gravity relative to the aerodynamic center.

8.8.2 Thrust pitching moment

Jet engines on an airplane have a number of effects on the pitching mo-
ment. First, there is a moment due to the line of action of the thrust
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force not passing through the center of gravity. Second, engines are usu-
ally at an angle of attack relative to the free stream so that the air stream
passing through the engine is deflected downward. This flow deflection
causes a force which acts in the neighborhood of the engine inlet. While
this force has a negligible effect on the translational motion of airplanes,
its corresponding moment also has a small effect on the rotational mo-
tion. Third, the high-speed jet stream exiting the engine pulls slower
moving air around it along with it (entrainment) and modifies the flow
field around the jet stream. To prevent this effect from changing the
flow field around the horizontal tail, the placement of the horizontal tail
is dictated by the location of the engines. For engines mounted under
the wings, the horizontal tail can be placed at the bottom of the vertical
tail. For fuselage-mounted engines, the horizontal tail is placed at the
top of the vertical tail.

The thrust pitching moment is written in the form

CT

m
= CT

m0
+ CT

mα
α. (8.59)

The term CT
m0

is the direct thrust moment coefficient (see Fig. 8.13)

CT

m0
=

T lT

q̄Sc̄
. (8.60)

where lT is the moment arm of the thrust, positive when the thrust acts
below the center of gravity. For body-mounted engines, the moment
arm is sufficiently small that CT

m0
can be negligible with respect to the

corresponding aerodynamic moment term.

The term CT

mα
α represents the thrust moment coefficient due

to turning the inlet jet stream into the engine. For body-mounted en-
gines, this term is insignificant because the wing turns the flow into the
engine. Wing-mounted engines operate in the upwash in front of the
wing which increases the angle of attack of the engine. Hence, the inlets
of these engines are placed out in front of the wing as far as possible.
Regardless, for low angle of attack operation, this term is not considered
to be important and is dropped from this point. Perhaps it is important
at high angle of attack and high power setting.
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cg

Thrust line
of action

T

l
T

Figure 8.13: Direct Thrust Moment

8.8.3 Airplane pitching moment

The airplane pitching moment is the sum of the aerodynamic pitching
moment (8.53) and the thrust pitching moment (8.59) and is given by

Cm = Cm0 + Cmα
α + CmδE

δE . (8.61)

where

Cm0 = CA

m0
+ CT

m0
, Cmα

= CA

mα
, CmδE

= CA

mδE

. (8.62)

8.9 Q Terms

When an airplane is pitching up about the cg, the horizontal tail expe-
riences an increase in its angle of attack due to the rotational motion as
shown in Fig. 8.14. If the pitch rate is zero, air moves past the hori-

V

cgc
W

_

c
H

_VT

VH

VHT

ΔαH

Q

Figure 8.14: Increase in αH due to Q

zontal tail at the speed VH . If the pitch rate is not zero, the tail moves
downward at the speed

VHT = (XacH
− Xcg)Q. (8.63)
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This is the same as the air moving upward over the horizontal tail at the
same speed. Consequently, the actual speed of the air over the horizontal
tail is vector sum of VH and VHT or VT as shown in the figure. The angle
∆αH between the velocity VT and the velocity VH is the increase in the
angle of attack of the horizontal tail due to the rotational motion. If
small angles and VH

∼= V are assumed,

∆αH =
VHT

VH

=
(XacH

− Xcg)Q

V
(8.64)

so that αH becomes

αH = α + iH − ǫ + ∆αH . (8.65)

If Eq. (8.65) is used in place of Eq. (8.39) in the development of the lift
coefficient, the lift coefficient becomes

CL = (CL)Q=0 + CLαH
ηH

SH

S

(XacH
− Xcg)Q

V
. (8.66)

Then, the definition (8.10) of CLQ
leads to

CLQ
= 2CLαH

ηH V̄H (8.67)

where V̄H is the horizontal tail volume coefficient. In the same vein, the
pitching moment can be written as

CA

m
= (CA

m
)Q=0 − CLαH

ηH V̄H

XacH
− Xcg

V
Q (8.68)

so that the definition (8.10) of CA

mQ
gives

CA

mQ
= −2CLαH

ηH V̄H(X̄acH
− X̄cg) = −CLQ

(X̄acH
− X̄cg). (8.69)

Values of these quantities for the SBJ at M = .6 (App. A) are
given by CLQ

= 4.44 and CA

mQ
= -11.7.

8.10 α̇ Terms

The α̇ terms are included as an attempt to model the time dependence of
the downwash at the horizontal tail. Imagine an airplane in gliding level
flight where α is increasing with time. This means that the downwash
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angle at the horizontal tail ε is increasing with time. However, it takes
a finite time for the downwash to get from the wing to the horizontal
tail. Hence, at a given time instant, the downwash angle (α̇ 6= 0) at the
horizontal tail is the downwash angle (α̇ = 0) at the wing at an earlier
time, that is,

εα̇6=0(t) = ε(t − ∆t) (8.70)

where ∆t is approximated by

∆t =
XacH

− XacWB

V
. (8.71)

For small ∆t, a Taylor series expansion yields

εα̇6=0(t) = ε(t) − ε̇(t)∆t. (8.72)

Since ε = ε0 + εαα, it is seen that

εα̇6=0(t) = ε(t) − εαα̇∆t (8.73)

Finally, the angle of attack of the horizontal tail is given by

αH = α + iH − ε + εαα̇
XacH

− XacWB

V
. (8.74)

With regard to the lift coefficient, the use of Eq. (8.74) in place
of Eq. (8.39) in the development of the lift coefficient leads to

CL = (CL)α̇=0 + CLαH
ηH

SH

S
εα

XacH
− XacWB

V
α̇. (8.75)

Hence, the definition (8.10) of CLα̇
gives

CLα̇
= 2CLαH

ηH

SH

S
εα(X̄acH

− X̄acWB
). (8.76)

A similar development for the pitching moment gives

CA

m
= (CA

m
)α̇=0 − CLαH

ηHεα

XacH
− XacWB

V
V̄H α̇ (8.77)

so that, the definition (8.10) of Cmα̇
yields

CA

mα̇
= −2ηHCLαH

εα(X̄acH
− X̄acWB

)V̄H = −CLα̇
(X̄acH

− X̄cg). (8.78)

Values of these quantities for the SBJ at M = .6 (App. A) are
given by CLadot

= 1.89 and CA

madot
= -4.98.
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8.11 Airplane Drag

The parabolic drag polar of a complete aircraft has been discussed in
Chap. 3 and has the form

CD = C̄D0 + K̄CL
2 (8.79)

where C̄D0 is the zero-lift drag coefficient and K̄ is the induced drag
factor. For subsonic speeds, both C̄D0 and K̄ are constant. When the
Eq. (8.44) for CL is substituted into the drag polar and terms involving
δE and iH are neglected, the equation for the drag becomes

CD = C0(M) + C1(M)α + C2(M)α2. (8.80)

where
C0 = C̄D0 + K̄C2

L0

C1 = −2K̄CL0CLα

C2 = K̄C2
Lα

(8.81)

Values of these quantities for the SBJ at M = .6 (App. A) are
given by C0 = .0235, C1 = .0629, and C2 = 1.943.

In Chap. 3, the induced drag of the horizontal tail was ne-
glected relative to that of the wing in computing the drag polar. How-
ever, with a formula for the downwash angle at the horizontal tail, it is
possible to calculate the induced drag of the horizontal tail and include
it the drag polar.

8.12 Trimmed Drag Polar

Once the pitching moment is known, it is possible to include the effect of
elevator deflection on the drag coefficient. Since the drag is essentially
parabolic and the lift and aerodynamic pitching moment are linear, they
can be expressed in the general forms

CD = C̄D0 + K̄C2
lα

(α − α0L)2 (8.82)

CL = CL0 + CLα
α + CLδE

δE (8.83)

CA

m
= CA

m0
+ CA

mα
α + CA

mδE

δE . (8.84)
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At low subsonic speeds, the δE term in the lift can be neglected.
Then, Eq. (8.83) can be solved for α in terms of CL and used to eliminate
α from Eq. (8.84). Since CL0 = −CLα

α0L, the result has the form

CD = C̄D0 + K̄C2
L
, (8.85)

as before.

If the δE terms are included, Eq. (8.84) is solved for the δE

which makes CA

m
= 0 (trimmed flight), that is,

δE =
CA

m0

CA
mδE

−
CA

mα

CA
mδE

α. (8.86)

Then, δE is eliminated from Eq. (8.83) to obtain

CL = C ′

L0
+ C ′

Lα
α (8.87)

where

C ′

L0
= CL0 − CLδE

CA

m0

CA
mδE

, C ′

Lα
= CLα

− CLδE

CA
mα

CA
mδE

. (8.88)

Finally, α is eliminated from Eq. (8.82) which becomes

CD = C̄D0 + K̄

(

CLα

C ′

Lα

)2

(CL − C ′

L0
− C ′

Lα
α0L)2. (8.89)

The trimmed drag polar has the form

CD = CDm
+ Km(CL − CLm

)2. (8.90)

While this polar may be more accurate, its coefficients are now functions
of cg position (X̄cg).

Problems

8.1 For an arbitrary planform (arbitrary c(y)), the equations for the
mean aerodynamic chord and the location of the aerodynamic cen-
ter are given by

c̄ =
2

S

∫ b

2

o

c2(y) dy, η =
2

S

∫ b

2

o

yc(y) dy, ξ =
2

S

∫ b

2

o

x(y)c(y) dy.
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a. For a straight tapered wing (Figs. 3.8 and 8.5), show that

c(y) = cr − (cr − ct)
y

b/2
, x(y) = pc(y) + tan λle y

where p is the airfoil ac/c.

b. Derive Eqs. (8.15) for a straight tapered wing.

8.2 Calculate the location of the aerodynamic center ξ, η and the mean
aerodynamic chord c̄ of the wing of the SBJ (App. A). Find the
distance from the nose to the leading edge of the wing mean aero-
dynamic chord.

8.3 Calculate X̄acWB
and X̄acH

for the SBJ. Assuming that the cg is
located 21.4 ft from the nose along xb, show that X̄cg = .30.

8.4 Given all of the geometric data and the airfoil aerodynamic data
listed in App. A and the results of Probs. 8.2 and 8.3, perform
the tasks listed below for the SBJ operating at M = 0.6 and X̄cg:

a. Calculate α0LW
, CLαW

, CmacW
, CLαH

and τE .

b. Calculate εα and ε0.

c. Calculate CL0, CLα
, and CLδE

d. Calculate V̄H , CA

m0
, CA

mα
, CA

mδE

, and X̄ac.

e. Calculate CLQ
, CA

mQ
, CLα̇

, CA

mα̇

Once you have calculated these aerodynamic quantities and, hence,
verified the results listed in App. A, use the results of App. A.

8.5 For the SBJ at M = 0.6 and X̄cg, show that the trimmed drag
polar is given by

CD = .023 + .0870(CL + .00865)2.

How does the trimmed drag polar compare with the untrimmed
drag polar at this flight condition?



Chapter 9

Static Stability and Control

A result of trajectory analysis is the flight envelope of an airplane. The
flight envelope is the region of the velocity-altitude plane where the air-
plane can operate in quasi-steady flight (climb, cruise, descent). How-
ever, in trajectory analysis only the forces acting on the airplane and
the resulting motion of the center of gravity are considered. The next
step is to analyze the forces and moments acting on the airplane and
the combined motions of the center of gravity and about the center of
gravity. It is important to determine whether or not a nominal pilot can
control the airplane at all points of the flight envelope and for all center
of gravity locations. Other issues concern the behavior of the airplane
when subjected to control inputs and to wind gusts. This is the subject
matter of stability and control.

With regard to stability, assume that an airplane is operating
in cruise at a given flight condition. Then, at some time instant, the
airplane is disturbed from this flight condition by a control surface de-
flection or a wind gust. The airplane is said to be dynamically stable if
over time it returns to the original flight condition or to goes to a neigh-
boring flight condition. On the other hand, static stability is concerned
with what happens at the point of the disturbance. The airplane is said
to be statically stable if it automatically produces forces and moments
which tend to reduce the disturbance, that is, if certain quantities have
the right signs. As an analogy, static stability is like point performance
in trajectory analysis, and dynamic stability is like path performance.

With regard to control, there are two issues. In static control,
the control force required to operate at a given flight condition is deter-
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mined to ensure that it is within the capability of a nominal pilot. Also,
the stick force should be zero in the neighborhood of the desired cruise
speed, and it should take a push on the stick to increase the speed and
a pull to decrease it. In dynamic control, the time-dependent response
to a control input is examined.

It should be noted that an airplane can be unstable and still
be flown safely providing the controls are sufficiently effective. This was
the case with the Wright brothers airplane.

An important consideration is how the mass properties of the
airplane (mass, cg, moment of inertia) affect its stability and control
characteristics. Of particular concern is the effect of changing the cg
position.

In addition to stability and control characteristics in quasi-
steady flight. it is important to examine the behavior of an airplane in
nonsteady flight. Particular trajectories include a pull-up in the vertical
plane and a turn in the horizontal plane.

In general, small perturbation motion of an airplane causes the
6DOF equations of motion to divide into two sets. One set governs the
pitching or longitudinal motion of the airplane. The other set governs
the combined rolling and yawing motion or lateral-directional motion of
the airplane. In this chapter, static longitudinal stability and control is
discussed in some detail; only a few brief remarks are made about static
lateral-directional stability and control.

9.1 Longitudinal Stability and Control

Several topics associated with static longitudinal stability and control for
quasi-steady cruise, climb, and descent are discussed. First, equations for
determining the angle of attack and the elevator angle (trim conditions)
required to maintain a given flight condition are derived. Then, studying
the effect of center of gravity position on trim leads to a forward cg
limit. Next, speed stability and angle of attack stability are investigated.
Angle of attack stability leads to an aft cg limit which is called the
neutral point. The use of the elevator to control the airplane in pitch
is discussed. Control characteristics of an airplane are studied with a
view toward good handling qualities, that is, stick force and stick force
gradient. Trim tabs are introduced to reduce the stick force to zero at
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a given flight condition. However, if the pilot trims the airplane and
then lets go of the stick (free elevator), its stability characteristics are
reduced. A trajectory which imposes additional control-related limits
on cg position is the pull-up, leading to the maneuver point. Finally, a
few brief remarks are made about static lateral-directional stability and
control.

9.2 Trim Conditions for Steady Flight

The purpose of this section is to determine the angle of attack and
elevator angle required for a given flight condition in a steady cruise,
climb, or descent. For steady flight, it is assumed that V̇ , γ̇, Q̇, and
α̇ are zero, that γ and ε0 + α are small, and that T (ε0 + α) << W .
Then, the dynamic equations for a steady cruise, climb, or descent are
obtained from Eq. (8.4) as

T − D − Wγ = 0

L − W = 0

M = 0.

(9.1)

These equations can be written in a nondimensional form by introducing
force and moment coefficients. For a force F with a moment arm d, the
force and moment coefficients are defined as

CF =
F

q̄S
, CF

m
=

Fd

q̄Sc̄
(9.2)

where q̄ is the dynamic pressure, S is the wing planform area, and c̄

is the mean aerodynamic chord of the wing. The equations of motion
become

CT − CD − CW γ = 0

CL − CW = 0

Cm = 0.

(9.3)

Finally, if Eqs. (9.3), (8.44), and (8.61) are combined, the equations of
motion become

CT − CD0 − KC2
L − CWγ = 0 (9.4)

CL0 + CLα
α + CLδE

δE − CW = 0 (9.5)

Cm0 + Cmα
α + CmδE

δE = 0. (9.6)
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If h, M, W, T are given, the flight path inclination can be de-
termined from Eq. (9.4). On the other hand, if the flight path angle is
given (as in level flight where γ = 0), Eq. (9.4) yields the thrust required
to fly at that γ. This value of the thrust is used to determine the thrust
moment. In either case, Eqs. (9.5) and (9.6) can be solved for α and δE

as

α =
(CL − CL0)CmδE

+ Cm0CLδE

CLα
CmδE

− Cmα
CLδE

(9.7)

and

δE = −
CLα

Cm0 + Cmα
(CL − CL0)

CLα
CmδE

− Cmα
CLδE

(9.8)

where CL is written in place of CW , the two being equal. Because Cm =
0, these equations are referred to as trim conditions and can be used to
ensure that the elevator is big enough to trim the airplane throughout
the flight envelope. The trim conditions have been computed for the
SBJ at the flight conditions of Sec. A.2 and are found to be α=2.23 deg
and δE = 1.95 deg.

For airplanes with all-moving horizontal tails (no elevator),
trim is achieved by iH . In this case Eqs. (9.5) and (9.6) can be solved
for α and iH .

Effect of cg position on trim conditions

The next step is to determine the effect of cg position on the trim con-
ditions. The cg position is contained in all the Cm terms. However,
since V̄H does not change much with cg position, the major effect of cg
position is contained in the Cmα

term as defined by Eq. (8.56). Also, in
the denominator of Eqs. (9.7) and (9.8), the dominant term is CLα

CmδE

.
As a consequence, cg position does not affect the trim angle of attack,
but it does affect the trim elevator angle. Furthermore, as the cg is
moved forward, the elevator angle becomes more negative. Since there
is a limit on the magnitude of δE, there is a forward limit on cg position.
The forward cg location is obtained from Eq. (9.8) by setting δE = δEmin

and is given by

X̄cg = X̄ac −
Cm0 + CmδE

δEmin

CL − CL0

. (9.9)

Since it is desirable to control the airplane to CLmax
at any

Mach number, the least forward cg position occurs when CL = CLmax
.
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In general, the most restrictive forward cg limit occurs on land-
ing approach with flaps down (highest CLmax

) and in ground effect where
the downwash angle at the horizontal tail is about half that in free flight.

9.3 Static Stability

An airplane is said to be statically stable if, following a disturbance,
forces and moments are produced by the airplane which tend to reduce
the disturbance. The word tend means that certain quantities have the
right sign.

Imagine an airplane in steady level flight, and assume that it
flies into a region of vertically ascending air whose effect is to instanta-
neously increase the speed of the airplane relative to the air and increase
the angle of attack. These effects are shown in Fig. 9.1. For the airplane
to be statically stable, it must generate forces and a moment which tend
to reduce the velocity disturbance and the angle of attack disturbance.

O

xb

Vairplane

Vgust

Vresultant

αΔα

α + Δα

Figure 9.1: Increase in Velocity and Angle of Attack Due to Gust

In level flight (cruise), the principle effect of a speed distur-
bance is governed by the equation

mV̇ = T − D. (9.10)

where at the trim point

V̇ = 0, T − D = 0. (9.11)

If the disturbance is such that the speed is increased by a small amount,
T −D must become negative so that V̇ < 0 and the velocity disturbance
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tends to decrease. If the speed is decreased, T −D must become positive
so that V̇ > 0 and the velocity disturbance tends to increase. Note that
these conditions are satisfied at the high-speed solution (see Fig. 4.1)
but not at the low-speed solution. Hence, the high-speed solution is
speed stable, but the low-speed solution is not.

The principal effect of an angle of attack disturbance is gov-
erned by the equation

IyyQ̇ = M (9.12)

where at the trim point

Q̇ = 0, M = 0. (9.13)

If the disturbance is such that the angle of attack increases, M must
become negative so that Q̇ < 0 and the angle of attack disturbance
tends to decrease. If the angle of attack is decreased, M must become
positive so that Q̇ > 0.

In coefficient form, Fig. 9.2 shows a plot of pitching moment
coefficient versus angle of attack in which the moment curve slope Cmα

is negative and Cm is zero at the trim angle of attack. If the angle
of attack is increased a small amount from the trim angle of attack a
small amount ∆α, the pitching moment acting on the airplane becomes
negative. A negative pitching moment tends to rotate the nose of the
airplane downward and reduce the angle of attack. Hence, an airplane
with Cmα

< 0 is statically stable in angle of attack. If Cmα
> 0, an

Cm

Cm < 0

Cm α < 0

Cm = 0

δE , M  given

Δα

α

Trim point

Figure 9.2: Static Stability
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increase in α causes a positive pitching moment (nose up) which tends to
increase α still further. Such an airplane is statically unstable. Further,
if Cmα

= 0, an increase in α does not change Cm (it is still zero), and the
angle of attack stays at the perturbed value. This airplane is statically

neutrally stable.

An airplane without a horizontal tail is statically unstable, and
it is the addition of the horizontal tail that makes it stable. The amount
of static stability wanted for the airplane, that is, the value of Cmα

,
determines the location and size of the horizontal tail.

Effect of cg position on angle of attack stability

From Eqs. (8.58) and (8.62), it is known that

Cmα
= CLα

(X̄cg − X̄ac) (9.14)

where CLα
> 0. Hence, if X̄cg < X̄ac, the airplane is statically stable

(Cmα
< 0). If X̄cg = X̄ac, the airplane is statically neutrally stable

(Cmα
= 0), Finally, if X̄cg > X̄ac, the airplane is statically unstable.

For an airplane to be inherently (by design) aerodynamically statically
stable, the center of gravity must be ahead of the aerodynamic center.
Since the aerodynamic center is the cg location where the airplane is
neutrally stable, it is also called the neutral point. The distance between
the center of gravity and the aerodynamic center or neutral point, that
is, X̄ac − X̄cg, is called the static margin. Static margin is an important
design parameter for inherently aerodynamically stable airplanes.

The Wright brother’s airplane was aerodynamically unstable,
but they were able to fly their airplane because of its control system.
Once the application of aerodynamic stability was understood, airplanes
were designed to be aerodynamically stable. This design criterion (pos-
itive static margin) is still used today with the exception of modern jet
fighters beginning with the F-16. Designed to be a lightweight fighter,
the F-16 was allowed to be aerodynamically statically unstable (subson-
ically) to decrease the size of its horizontal tail and, hence, its weight.
The F-16 is made stable, however, by its automatic flight control system.
A rate gyro senses an uncommanded pitch rate (a pitch rate caused by
a gust, for example), and the control system deflects the elevator almost
instantaneously to generate an opposing pitching moment to cancel out
the pitch rate.
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9.4 Control Force and Handling Qualities

The air flowing over an elevator creates a pressure distribution on its
surface that causes a moment about the elevator hinge line called the
elevator hinge moment. To keep the elevator at a particular angle, a
control moment opposite in sign to the hinge moment must be provided
by the pilot in form of a force on the control column.

In the process of designing an airplane, the force required of
the pilot must be kept within his physical capability. The magnitude
of this pilot force depends on the size of the airplane and the speed for
which it is designed. For small, slow airplanes, the pilot is connected
directly to the elevator (reversible control system), and he feels the full
effect of the moment acting on the elevator. For large, slow airplanes
such as the B-52, the elevator may be so heavy that the pilot cannot
move it by himself. In this case the airplane is designed with a hydraulic
or electrical system which provides part or even all the necessary control
moment. This is also true for small and large, fast airplanes where the
aerodynamic hinge moment becomes very large due to high dynamic
pressure.

For the case where the hydraulic or electrical system provides
all of the control moment (irreversible control system), the pilot com-
mands an elevator deflection, and the automatic flight control system
causes the elevator to be deflected to that angle. To give the pilot some
feel about how much force is being created, an artificial feel system is
provided. This artificial feel can be created by a spring of controlled
stiffness opposing the rotation of the control column.

To illustrate the analysis of stick force, hinge moment, etc.,
consider the reversible control system (no power assist) shown in Fig.
9.3 where the region marked gearing represents the mechanical linkage
of the control system, and assume that the airplane is flying at a low
subsonic speed (Mach number effects negligible in the aerodynamics).
A positive stick force is a pull, and a positive stick deflection is aft. At
the elevator, a positive hinge moment is clockwise, same as the pitching
moment. The stick force can be expressed as

Fs = GH (9.15)

where G > 0 is the gearing and H is the aerodynamic hinge moment.
The gearing includes the moment arm which converts the stick force to
a moment.
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H
FS

Gearing

δS

Control column

Control

Moment

Figure 9.3: Sign Conventions for Control

The elevator hinge moment is converted to coefficient form by
dividing by the local dynamic pressure q̄H , the elevator area SE aft of
the hinge line, and an average chord cE of the elevator aft of the chord
line, that is,

Ch =
H

q̄HSE c̄E

(9.16)

so the stick force becomes

Fs = Gq̄HSE c̄ECh. (9.17)

Next, the hinge moment coefficient is assumed to vary linearly with αH

and δE so that
Ch = Ch0 + ChαH

αH + ChδE

δE (9.18)

where Ch0 = 0 because tail surfaces are symmetric. From Eqs. (8.39),
(8.40), and (9.17), it is seen that

Fs = Gq̄ηHSE c̄E

[

ChαH
(iH − ε0) + ChαH

(1 − εα)α + ChδE

δE

]

. (9.19)

Then, to isolate the dynamic pressure, Eq. (9.19) is combined with Eqs.
(9.7), (9.8), and CL = W/q̄S, leading to the following result for the stick
force:

FS = A + BV 2 (9.20)

where A and B are independent of V . The specific forms for A and B

are easily derived if needed.

Eq. (9.20) shows how control force varies with velocity. In
terms of velocity, the stick force should have the form shown in Fig. 9.4
for good airplane handling qualities. The stick force should be zero at a
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speed near the desired cruise speed; the maximum required stick force
should be within the capability of a nominal pilot; and the stick force

gradient
∂Fs

∂V
= 2 BV (9.21)

A

V

FS

Stick force
trim speed
(FS = 0)

VC

h, W, P  given

Figure 9.4: Stick Force versus Flight Speed

from the stick force trim speed (Fs = 0), a push stick force is required,
and to decrease the speed, a pull is needed. These handling qualities are
obtained if A > 0 and B < 0 and if the maximum stick force is within

max). In Fig. 9.4, VC is the minimum speed at
with the elevator can rotate the airplane.

It is possible to achieve Fs

a trim tab. It is also possible to do this with a movable horizontal
stabilizer through iH , if this control is available.

9.5 Trim Tabs

At an arbitrary flight condition, the stick force is not zero, and to operate
the airplane at the given speed, the pilot must produce a continuous stick
force. Trim tabs were invented to cause the elevator to float (Ch = 0)
at a given angle so that the stick force can be made zero over a range
of flight speeds. A trim tab(see Fig. 9.5) is a small flap on the trailing
edge of a control surface; see the ailerons of the subsonic business jet in
App. A. When deflected, trim tabs have a negligible effect on lift and

= 0 at the desired flight speed with

pilot capability (A < A

should be negative at this point. Hence, to increase the speed away
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Figure 9.5: Trim Tab

drag but produce a moment about the hinge line which can offset the
elevator hinge moment.

To analyze the effect of a trim tab, the hinge moment is written
as the linear relation

Ch = ChαH
αH + ChδE

δE + ChδT

δT (9.22)

where Ch0 = 0 for symmetric tails. If the trim tab is used to make
Ch = 0 (zero stick force), the elevator floats at the angle

δE = −
ChαH

αH + ChδT

δT

ChδE

(9.23)

Combined with Eqs. (8.39) and (8.40), the elevator angle is related to
the angle of attack and the trim tab angle as

δE = −
ChαH

ChδE

[iH − ε0 + (1 − εα)α] −
ChδT

ChαH

δT . (9.24)

Note that the angle at which the elevator floats depends on the angle of
attack. If α changes, δE will change for the given trim tab setting.

Consider the situation in which the pilot trims the airplane at
a given speed to obtain zero stick force. If the pilot holds the control
so that the elevator cannot move, the stability characteristics do not
change. On the other hand, if the pilot lets go of the control, the elevator
is free to move if the angle of attack changes. In addition, the stability
characteristics of the airplane change.

Trim  tab

dE

dT
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If Eq. (9.24) is used to eliminate the elevator angle from Eqs.
(8.44) and (8.53), all of the coefficients of these equations change. In
particular, Cmα

(now called C ′

mα
) becomes

C ′

mα
= CLαWB

(X̄cg − X̄acWB
)

− CLαH
(1 − εα)ηH V̄H

(

1 − τE

ChαH

ChδE

)

.
(9.25)

The term

1 − τE

ChαH

ChδE

(9.26)

reduces the horizontal tail effectiveness. In addition, the aerodynamic
center or neutral point of the airplane (C ′

mα
= 0) becomes

X̄ ′

ac
=

CLαWB
X̄acWB

+ CLαH
(1 − εα)ηH

SH

S

(

1 − τE

ChαH

ChδE

)

X̄acH

CLαWB
+ CLαH

(1 − εα)ηH
SH

S

(

1 − τE

ChαH

ChδE

) (9.27)

This neutral point is called the stick-free neutral point and the previous
neutral point (8.57) is often referred to as the stick-fixed neutral point.
In general, allowing the elevator to float freely causes the neutral point
to move forward, reducing the stability of the airplane.

9.6 Trim Conditions for a Pull-up

The reference path used in the previous derivations is a quasi-steady
climb, cruise or descent. Another reference path that is used to inves-
tigate control is the a pull-up, which is an accelerated maneuver. An
important aerodynamic control characteristic is the elevator displace-
ment required to make an n-g pull-up or the elevator angle per g. There
exists a cg position where the elevator angle per g goes to zero, making
it too easy to make an high-g maneuver and destroy the airplane. This
cg position is behind the neutral point and is called the maneuver point,
a formula for which is derived here.

Consider a constant power setting, constant angle of attack
pull-up. The 6DOF equations of motion in wind axes are listed in Eqs.
(8.4) and (8.5). If it is assumed that V̇ , Q̇, ε, and Tε are small and
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that the pull-up is to be investigated at its low point where γ = 0, the
dynamic equations become

0 = T − D

Q = (g/WV )(L − W )

0 = M.

(9.28)

In terms of nondimensional coefficients (see Sec. 9.2), these equations
can be rewritten as

0 = CT − CD0 − KC2
W n2

̂Q = (c̄g/2V 2)(n − 1)

n = CL/CW

0 = Cm.

(9.29)

The quantity
̂Q = c̄Q/2V (9.30)

is the nondimensional pitch rate. Since α̇ = 0, it is known from Sec. 8.2
that

CL = CL0 + CLα
α + CLδE

δE + CLQ

̂Q

Cm = Cm0 + Cmα
α + CmδE

δE + CmQ

̂Q
(9.31)

where

Cm0 = CT

m0
+ CA

m0
, Cmα

= CA

mα
, CmδE

= CA

mδE

, CmQ
= CA

mQ
. (9.32)

Formulas for calculating the Q derivatives are given in Sec. 8.9.

Given h, M, W, P and n, the first of Eqs. (9.29) gives the thrust
which is used to compute the thrust moment. The remaining three
equations lead to

CL0 + CLα
α + CLδE

δE + CLQ

̂Q = CWn

Cm0 + Cmα
α + CmδE

δE + CmQ

̂Q = 0
(9.33)

where
̂Q = (gc̄/2V 2)(n − 1). (9.34)

These equations are solved for α and δE as follows:

α =
CmδE

(CWn − CL0 − CLQ

̂Q) + CLδE

(Cm0 + CmQ

̂Q)

CLα
CmδE

− Cmα
CLδE

(9.35)
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δE = −
CLα

(Cm0 + CmQ

̂Q) + Cmα
(CWn − CL0 − CLQ

̂Q)

CLα
CmδE

− Cmα
CLδE

. (9.36)

There exists a cg position where the elevator angle becomes
independent of n, meaning that a small elevator deflection can create a
large n maneuver. This cg position comes from the elevator angle per g,
that is,

∂δE

∂n
= −

CLα
CmQ

(c̄g/2V 2) + Cmα
[CW − CLQ

(c̄g/2V 2)]

CLα
CmδE

− Cmα
CLδE

. (9.37)

Using Eq. (8.58) for Cmα
and setting the elevator angle per g to zero

leads to the following equation for the maneuver point:

X̄cg = X̄ac −
CmQ

(c̄g/2V 2)

CW − CLQ
(c̄g/2V 2)

. (9.38)

Numerically, the second term in the denominator is negligible with re-
spect to the first. Then, because CmQ

< 0, the maneuver point is aft of
the neutral point. While an airplane can have the cg behind the ac with
stability provided electronically, the cg must be ahead of the maneuver
point.

There is another maneuver point associated with the stick force
per g going to zero at some cg position (see Ref. ER). It is called the
stick-free maneuver point, and it is aft of the stick-fixed maneuver point

(9.38).

It is important to know where the neutral points and the ma-
neuver points are so that the aft bound on the cg position can be chosen
a safe distance from all of them.

9.7 Lateral-Directional Stability

In summary, static longitudinal stability and control involves the force
coefficient in the x direction Cx, the force coefficient in the z direction
Cz, and the pitching moment coefficient Cm. Each of these items is a
function of angle of attack α, Mach number M, and elevator deflection
δE . The control is the elevator, and pitch stability is provided by the

and Control
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horizontal tail, requiring that Cmα
< 0. Recall that Cmα

is the slope of
the Cm

Static lateral-directional stability and control involves the side
force coefficient Cy, the yawing moment coefficient Cn, and the rolling
moment coefficient Cl. These quantities are functions of the sideslip
angle β (see Fig. 9.6), the Mach number M , the aileron deflection δA, and
the rudder deflection δR. Rolling motion is controlled essentially by the

O

Vβ

Figure 9.6: Sideslip Angle

ailerons, and roll or lateral stability is provided by wing dihedral, wing
location on the fuselage (high or low), and wing sweep. It requires that
Clβ

< 0, where Clβ
is the slope of the Cl versus β line. Yawing motion

is controlled essentially by the rudder. Yaw or directional stability is
provided by the vertical tail and requires that Cnβ

> 0. Cnβ
is the slope

of the Cn versus β line.

For multi-engine airplanes, one-engine-out trimmed flight (no
moments) requires both aileron and rudder deflections. Furthermore,
this trim condition sizes the vertical stabilizer.

versus α line.

9.7.  Lateral-Directional Stability and Control
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Problems

9.1 At this point, all of the geometric data and the aerodynamic data
are known for the SBJ (App. A). Assume that the SBJ is operating
at the following cruise conditions:

h = 30, 000 ft, ρ = 0.000889 slug/ft2
, a = 995 ft/s2

V = 597 ft/s, W = 11, 000 lb, γ = 0.0 deg

M = 0.6, CL = .299, X̄cg = .300

iH = −2.0 deg, lT = −2.0 ft

C̄D0 = 0.023, K̄ = 0.073.

a. How much thrust are the engines producing in this constant
altitude flight condition? Calculate CT and CT

m0
.

b. At what angle of attack is the airplane operating?

c. What is the elevator angle?

d. What is the most forward cg position for this flight condition
if δEmin

= −20 deg. What would the most forward cg position
be if CL were CLmax = 1.2?

e. Is the aircraft statically stable? What is the static margin?

f. What is the hinge moment coefficient if

ChαH
= −0.383 rad−1 , ChδE

= −0.899 rad−1.

Is the pilot pulling or pushing on the control column?

Does the sign of the trim tab deflection make sense?

g. If the SBJ had elevator trim tabs and ChiH
= -.776, what trim

tab angle is needed to get the elevator to float at the angle of

h. Calculate the location of the stick-fixed maneuver point.

9.2 For an airplane with an all-moving horizontal tail (no elevator),
derive the equations for the angle of attack and the incidence of
the horizontal tail for trim, that is,

α =
(CL − C̄L0)CmiH

+ C̄m0CLiH

CLα
CmiH

− Cmα
CLiH

  part c.
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iH = −
CLα

C̄m0 + Cmα
(CL − C̄L0)

CLα
CmiH

− Cmα
CLiH

where C̄L0 is that part of CL0 that does not contain iH , C̄m0 is that
part of Cm0 that does not contain iH , and

CLiH
= CLαH

ηH

SH

S
, CmiH

= −CLαH
ηH V̄H .

Assume that the SBJ has an all-moving horizontal tail. For the
flight conditions of Prob. 9.1, calculate α and iH .
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6DOF Model: Body Axes

While the analysis of dynamic stability and control can be carried out in
wind axes, the convention is to use the equations of motion in the body
axes. After the equations of motion are derived in the regular body axes
system, they are derived in the stability axes system. The stability axes
are a set of body axes that are attached to the airplane at an angle
relative to the regular body axes. Stability axes are used in the study of
dynamic stability and control.

10.1 Equations of Motion: Body Axes

The assumptions and the coordinate systems are the same as those of
Sec. 2.1 with the exception of discarding the moments when forces are
moved to the center of gravity. Fig. 10.1 shows the regular body axes

Oxbybzb
which are fixed to the aircraft. The body axes are orientated

relative to the local horizon by the pitch angle Θ . Hence, the unit
vectors of these two systems satisfy the relations

ib = cos Θih − sin Θkh

kb = sin Θih + cos Θkh.
(10.1)

Then, since the local horizon unit vectors are constant, the time deriva-
tives of the body axes unit vectors are given by

dib

dt
= −Θ̇kb

dkb

dt
= Θ̇ib.

(10.2)
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Figure 10.1: Body Axes System

Fig. 10.1 also shows the velocity vector projected onto the
body axes. Because W is now used to denote a component of the velocity
vector, the weight is expressed as mg. The velocity vector can be written
as

V = U ib + Wkb. (10.3)

As a result the magnitude of the velocity vector is given by

V =
√

U2 + W 2, (10.4)

and the angle of attack satisfies the relation

tan α =
W

U
. (10.5)

10.1.1 Translational kinematic equations

The translational kinematic equations result from the definition of the
velocity:

V =
dEO

dt
. (10.6)

The scalar equations are obtained by writing the vectors in the local
horizon system where the unit vectors are constant. Combining Eqs.
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(10.1) and (10.3) leads to

V = (U cos Θ + W sin Θ)ih + (−U sin Θ + W cos Θ)kh. (10.7)

Next, since the position vector is given by

EO = xih − hkh, (10.8)

the definition of velocity leads to the scalar equations

ẋ = U cos Θ + W sin Θ

ḣ = U sin Θ − W cos Θ.
(10.9)

10.1.2 Translational dynamic equations

The translational dynamic equations are derived from Newton’s second
law F = ma and the definition of inertial acceleration a = dV/dt. From
the expression (10.3) for the velocity, the acceleration is given by

a = U̇ ib + U
dib

dt
+ Ẇkb + W

dkb

dt
(10.10)

which with the unit vector rates (10.2) becomes

a = (U̇ + W Θ̇)ib + (Ẇ − UΘ̇)kb. (10.11)

Next, from Fig. 10.2, it is seen that

F = [ T cos ε0 + L sin α − D cos α − mg sin Θ]ib

+ [−T sin ε0 − L cos α − D sin α + mg cos Θ]kb

(10.12)

Combining Eqs. (10.1), (10.12) with F = ma leads to the
translational dynamic equations

m(U̇ + W Θ̇) = T cos ε0 + L sin α − D cos α − mg sin Θ

m(Ẇ − UΘ̇) = −T sin ε0 − L cos α − D sin α + mg cos Θ.
(10.13)
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Figure 10.2: Forces and Moment

10.1.3 Rotational kinematic and dynamic equations

The equations for rotational motion of the airplane about the yb axis
are the same as those for rotational motion about the yw axis. Hence,
from Sec. 8.1, it is known that the rotational kinematic and dynamic
equations are given by

Θ̇ = Q

IyyQ̇ = MT + MA.
(10.14)

10.1.4 Mass equations

As in Chap. 2, the mass change is governed by the equation

ṁg = −CT. (10.15)

where the mass is used because W now denotes a velocity component.
Also, the mass moment of inertia Iyy is assumed to be a known function
of the mass.
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10.1.5 Summary

The six degree of freedom equations of motion for nonsteady flight in a
vertical plane over a flat earth in regular body axes are given by

ẋ = U cos Θ + W sin Θ

ḣ = U sin Θ − W cos Θ

U̇ = −WQ + (1/m)[ T cos ε0

+ L sin α − D cos α − mg sin Θ]

Ẇ = UQ − (1/m)[T sin ε0

+ L cos α + D sin α − mg cos Θ]

Θ̇ = Q

Q̇ = (MA + MT )/Iyy

ṁ = −CT/g.

(10.16)

where

V =
√

U2 + W 2, tanα =
W

U
. (10.17)

These equations contain several quantities (D, L, T, C) which
are functions of variables already present. The propulsion and aero-
dynamic terms in the equations of motion are assumed to satisfy the
following functional relations:

T = T (h, V, P ), C = C(h, V, P )

D = D(h, V, α), L = L(h, V, α, δE, Q, α̇)

MT = MT (h, V, P, α), MA = MA(h, V, α, δE, Q, α̇).

(10.18)

where δE is the elevator angle.

and two controls P and δE). Hence, there are two mathematical degrees
of freedom. To solve these equations, three additional equations involv-
ing existing variables must be provided. An example is specifying the
three control histories P = P (t) and δE(t), which are the controls avail-
able to the pilot, depending on the design of the horizontal tail.

Formulas for computing the aerodynamics of Eq. (10.18) have
already been derived in Chap. 8.

Eqs. (10.16) involve nine variables (seven states x, h,U,W,Θ,Q,m



10.2. Equations of Motion: Stability Axes 233

10.2 Equations of Motion: Stability Axes

The stability body axes system Oxsyszs
is shown in Fig. 10.3. Stability

body axes are body axes system that are fixed to the airplane at a differ-
ent orientation than the regular body axes. Note that U, W, α and Θ are

h

x
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W

V
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zs

Θ

E

O
xh

zh

xw
α

xb

T

ε
0

φ

Figure 10.3: Stability Axes System

now defined relative to the stability axes. However, the aerodynamics
is defined relative to the regular body axes, that is, the regular angle of
attack. If φ denotes the angle between the regular body axes and the
stability axes, the regular angle of attack, now denoted by ᾱ, is given by

ᾱ = α + φ. (10.19)

The 6DOF equations of motion in stability axes for flight in a
vertical plane can be derived in the same manner as Eqs. (10.16) and
are given by
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ẋ = U cos Θ + W sin Θ

ḣ = U sin Θ − W cos Θ

U̇ = −WQ + (1/m)[ T cos(ε0 + φ)

+ L sin α − D cos α − mg sin Θ]

Ẇ = UQ − (1/m)[T sin(ε0 + φ)

+ L cos α + D sin α − mg cos Θ]

Θ̇ = Q

Q̇ = (MA + MT )/Iyy

ṁ = −CT/g

(10.20)

where

V =
√

U2 + W 2, tanα =
W

U
. (10.21)

The functional relations for engine and aerodynamic behavior are ob-
tained from Eq. (8.6) as

T = T (h, V, P ), C = C(h, V, P )

D = D(h, V, ᾱ), L = L(h, V, ᾱ, ˙̄α, Q, δE)

MT = MT (h, V, P ), MA = MA(h, V, ᾱ, ˙̄α, Q, δE).

(10.22)

Finally, the equations of motion in stability axes have two mathematical
degrees of freedom, the same as those of the regular body axes.

10.3 Flight in a Moving Atmosphere

From the derivation of the equations of motion in the wind axes (Sec.
2.9), it is seen that the translational equations are given by

dEO

dt
= V0, F = ma0, a0 =

dV0

dt
. (10.23)

In these equations, the inertial velocity V0 is written as the vector sum
of the velocity relative to the atmosphere V plus the velocity of the
atmosphere relative to the ground w, that is,

V0 = V + w (10.24)
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As a consequence, the translational equations of motion become

dEO

dt
= V + w,

dV

dt
=

F

m
−

dw

dt
. (10.25)

As long as the reference point for moments is the center of gravity, the
moving atmosphere has no effect on the rotational equations.

The derivation of the stability axes equations is the same as
that in Sec. 10.2 with the added moving atmosphere terms. Hence, the
equations of motion for flight in a moving atmosphere in stability axes
are given by

ẋ = U cos Θ + W sin Θ + wx

ḣ = U sin Θ − W cos Θ + wh

U̇ = −WQ + (1/m)[ T cos(ε0 + φ)

+ L sin α − D cos α − mg sin Θ]

− ẇx cos Θ − ẇh sin Θ

Ẇ = UQ − (1/m)[T sin(ε0 + φ)

+ L cos α + D sin α − mg cos Θ]

− ẇx sin Θ + ẇh cos Θ

Θ̇ = Q

Q̇ = (MA + MT )/Iyy

ṁ = −CT/g

(10.26)

Problems

10.1 Consider the motion of a rocket in a vertical plane over a flat
earth outside the atmosphere (see Fig. 10.4). The orientation of
the rocket relative to the earth is given by the pitch angle θ(t).
The orientation of the thrust relative to the rocket centerline is
given by the gimbal angle δ(t) of the engine, and lT is the distance
from the center of gravity O to the base of the rocket. Derive the
6DOF equations of motion. Show that

ẍ =
T

m
cos(θ + δ)

ḧ =
T

m
sin(θ + δ) − g
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Figure 10.4: Rocket in Flight

θ̈ =
T sin δ lT

Iyy

ṁ = −β

where T = βc, c is the engine exhaust velocity assumed constant,
β is the propellant mass flow rate, and Iyy is the mass moment of
inertia about the pitch axis.

and moment equations to form a 3DOF model. At this point, the
gimbal angle δ(t) is the control. By assuming that the gimbal angle
is small, the equations of motion can be rewritten as

ẍ =
T

m
cos θ

ḧ =
T

m
sin θ − g

θ̈ =
Tδ lT

Iyy

ṁ = −β

With these equations, the θ̈ equation can be uncoupled from the
system, and θ can be used as the control variable for the remaining
equations. Once θ(t) has been determined, the θ̈ equation can be
used to compute the δ(t) needed to produce θ(t).

This problem provides another example of uncoupling the force



Chapter 11

Dynamic Stability

The purpose of this chapter is to study the translational and rotational
motion of an airplane to determine its dynamic stability and control
characteristics. While it is possible to do this by numerically integrating
the nonlinear six degree of freedom equations of motion, it is difficult to
establish cause and effect. To do so, an approximate analytical theory
is needed.

The basis for this theory is the linearization of the 6 DOF
equations of motion about a reference path which is characterized by
constant angle of attack, Mach number, and elevator angle. Then, it is
only necessary to solve linear ordinary differential equations with con-
stant coefficients. From these results comes information about response
to control input and stability.

First, the nonlinear 6 DOF equations for flight in a vertical
plane (longitudinal motion) are stated, and valid approximations are
introduced. Second, the resulting equations are linearized about a ref-
erence path which is a quasi-steady climb, cruise or descent. Third, the
response of an airplane to an elevator input or a vertical gust is exam-
ined, and the stability characteristics are determined. The effect of cg
change is discussed briefly, as is lateral-directional stability and control.

and Control
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11.1 Equations of Motion

In Chap. 10, the 6 DOF equations of motion for flight in a vertical
plane have been derived for the regular body axes and for the stability
body axes. The latter is a set of body axes which is oriented at an
angle φ relative to the regular body axes. Dynamic stability and control
studies involve two flight paths (Fig. 11.1): a reference path and a
perturbed path which lies in the neighborhood of the reference path (small

V

xs

O

O

xh

xw

xb

xb

xh, xw, xs

Vt=0

α
_

_
α1

α

1

Perturbed path
t

t Reference path

Figure 11.1: Perturbed Path and Reference Path

The reference path is assumed to be a steady cruise, climb, or
descent. It is possible to use the term steady because the time period of
interest for dynamic stability and control studies is sufficiently small that
atmospheric properties and mass properties can be assumed constant.
As a consequence, the angle of attack, the elevator angle, and the Mach
number are constant, and the pitch rate and the angle of attack rate are
zero on the reference path.

At t = 0, the airplane is on the reference path and is disturbed
from it, say by an elevator input. At this point, stability axes are defined
to be body axes which are aligned with the wind axes at t = 0. Hence,
the angle φ is the reference angle of attack, that is, φ = ᾱ1, so that
the stability axes change with the flight condition. For longitudinal
motion, the moment of inertia about the yb axis doe not change with
flight condition.

In stability and control, it is the convention to use α and δE

to denote the changes (perturbations) in the angle of attack and the
elevator angle from the reference values. To do this, the angle of attack

perturbations).
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and elevator angle are now called ᾱ and δ̄E . Hence, the angle of attack
is written as ᾱ = ᾱ1 +α where ᾱ1 is the angle of attack on the reference
path and α is the angle of attack perturbation. Similarly, δ̄E = δ̄E1 + δE .

With φ = ᾱ1, the 6 DOF equations of motion in stability axes
are obtained from Eqs. (10.20) as

ẋ = U cos Θ + W sin Θ

ḣ = U sin Θ − W cos Θ

U̇ = −WQ + (1/m)[ T cos(ε0 + ᾱ1)

+ L sin α − D cos α − mg sin Θ]

Ẇ = UQ + (1/m)[−T sin(ε0 + ᾱ1)

− L cos α − D sin α + mg cos Θ]

Θ̇ = Q

Q̇ = (MA + MT )/Iyy

ṁ = −CT/g

(11.1)

where the airplane velocity and angle of attack are related to the velocity
components as

V =
√

U2 + W 2, tanα = W/U. (11.2)

It is important to recall that U, W are the components of the
velocity vector on the stability axes, Θ is the pitch angle of the xs axis,
and α is the angle of attack of the xs axis.

The functional relations for the forces and moments are

D = D(h, V, ᾱ), L = L(h, V, ᾱ, δ̄E , Q, ˙̄α), C = C(h, V, T )

MA = MA(h, V, ᾱ, δ̄E, Q, ˙̄α), MT = MT (h, V, T ).
(11.3)

Note that the thrust has been made a variable instead of the power
setting.

Several approximations are made at this point. Since the time
span of interest during any trajectory is small, the atmospheric prop-
erties of density and speed of sound and the properties of mass, cen-
ter of mass, and moment of inertia are assumed constant. Since the
translational kinematic equations are linked to the remaining equations
through the atmospheric properties, they uncouple from the system and
can be used later to compute the geometry of the perturbed trajectory,
if needed. Also, the mass equation uncouples from the system and can
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be used later to compute the mass change. Other assumptions which are
made are that α , Θ, and ε0 + ᾱ1 are small, T (ε0 + ᾱ1) << mg, and the
thrust is constant. With these assumptions, the remaining equations of
motion become

U̇ = −WQ + (1/m)(T + Lα − D − mgΘ) (11.4)

Ẇ = UQ + (1/m)(−L − Dα + mg) (11.5)

Θ̇ = Q (11.6)

Q̇ = (MA + MT )/Iyy (11.7)

where Eqs. (11.2) with tan α = α and (11.3) still hold.

The equations for reference path (subscript 1) are obtained by
making the substitutions

U̇1 = Ẇ1 = Θ̇1 = Q̇1 = 0 (11.8)

which imply that U1, W1, Θ1, and Q1 are constant. Because stability
axes are used, the xs axis is along the xw axis so that

W1 = 0, V1 = U1 α1 = 0. (11.9)

The equations of motion become

T1 − D1 − mgΘ1 = 0 (11.10)

−L1 + mg = 0 (11.11)

Q1 = 0 (11.12)

MA

1 + MT

1 = 0 (11.13)

with

D = D(h, V, ᾱ), L = L(h, V, ᾱ, δ̄E)

MA = MA(h, V, ᾱ, δ̄E), MT = MT (h, V, T ).
(11.14)

Given h1, V1, m1g, and T1, these equations can be solved for Θ1(= γ1), ᾱ1,
and δ̄E1 as in Chap. 9.

11.2 Linearized Equations of Motion

through (11.7) are rewritten as

U̇ = −WQ + (1/m)(Cxq̄S − mgΘ) (11.15)

In order to linearize the thrust/aerodynamic terms separately, Eqs. (11.4)
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Ẇ = UQ + (1/m)(Czq̄S + mg) (11.16)

Θ̇ = Q (11.17)

Q̇ = Cmq̄Sc̄/Iyy (11.18)

where S and c̄ are the wing planform area and the wing mean aerody-

namic chord. If CT

∆
= T/q̄S, the force and moment coefficients are given

by

Cx = CT + CLα − CD

Cz = −CL − CDα

Cm = CT

m + CA

m.

(11.19)

The equations for the reference path become

Cx1 q̄1S − mgΘ1 = 0

Cz1 q̄1S + mg = 0

Q1 = 0

Cm1 = 0

(11.20)

where for α1 = 0

Cx1 = CT1 − CD1

Cz1 = −CL1

Cm1 = CT

m1
+ CA

m1
.

(11.21)

The equations of motion are now linearized about the reference
path. This is done by writing each variable at time t as the value on the
reference path plus a small perturbation, that is,

U = U1 + u

W = W1 + w

Θ = Θ1 + θ

Q = Q1 + q

(11.22)

where U1 and Θ1 are constant, W1 = 0 in stability axes and Q1 = 0 on
the reference path. Also, the force and moment coefficients are written
as

Cx = Cx1 + ∆Cx

Cz = Cz1 + ∆Cz

Cm = Cm1 + ∆Cm

(11.23)
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where ∆( ) denotes a small quantity.

These definitions are substituted into the equations of motion
and products and squares of small quantities (second-order terms) are
neglected. First, consider Eq. (11.2) for the velocity, that is,

V =
√

U2 + W 2 =
√

(U1 + u)2 + w2

= U1

(

1 + 2 u

U1
+ u2

U2
1

+ w2

U2
1

)1/2
.

(11.24)

After applying the binomial expansion

(1 + x)n = 1 + nx + · · · (11.25)

and neglecting second-order terms, it is seen that

V = U1

(

1 +
u

U1

)

= U1 + u. (11.26)

Next, the equation (11.2) for the angle of attack perturbation leads to

α =
W

U
=

w

U1 + u
=

w

U1

(

1 +
u

U1

)

−1

=
w

U1

(

1 −
u

U1
+ · · ·

)

. (11.27)

After neglecting second-order terms, it is seen that

α =
w

U1

(11.28)

Now, Eq. (11.15) for U can be written in terms of small quan-
tities as

d

dt
(U1 + u) = −wq + 1

m

[

(Cx1 + ∆Cx)
1
2
ρ(U1 + u)2S

− mg(Θ1 + θ)] .
(11.29)

After neglecting second-order terms and accounting for the reference
equation

Cx1 q̄1S − mgΘ1 = 0, (11.30)

the equation for u becomes

u̇ =
1

m

[(

∆Cx + 2Cx1

u

U1

)

q̄1S − mgθ

]

(11.31)
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If this process is applied to all of Eqs. (11.15) through (11.18),
the small perturbation equations of motion become

u̇ = (∆Cx + 2Cx1

u

U1
)(q̄1S/m) − gθ

U1α̇ = U1q + (∆Cz + 2Cz1

u

U1
)(q̄1S/m)

θ̇ = q

q̇ = ∆Cmq̄Sc̄/Iyy.

(11.32)

Note that Eq. (11.28) has been used to replace w by U1α and that each
term is linear in a small quantity.

The nondimensional forms of the functional relations (11.3) are
given by

CD = CD(ᾱ, M), CL = CL(ᾱ, δ̄E, M, c̄Q

2V
, c̄ ˙̄α

2V
)

CT

m
= CT

m
(M, CT ), CA

m
= CA

m
(ᾱ, δ̄E, M, c̄Q

2V
, c̄ ˙̄α

2V
).

(11.33)

In view of these functional forms, each force and moment coefficient
Cx, Cz, or Cm has the same functional form. For example,

Cx = Cx

(

ᾱ, δ̄E, M,
c̄Q

2V
,
c̄ ˙̄α

2V

)

. (11.34)

Writing each argument as the reference value plus a small perturbation
yields the relations

ᾱ = ᾱ1 + α

δ̄E = δ̄E1 + δE

M = U1+u

a
= M1 + M1

u

U1
c̄Q

2V
= c̄q

2V
= c̄q

2U1
c̄ ˙̄α
2V

= c̄α̇

2V
= c̄α̇

2U1
.

(11.35)

Now, Cx can be expanded in a Taylor series about the reference values
as follows:

Cx = Cx1 + ∂Cx

∂ᾱ

∣

∣

∣

1
α + ∂Cx

∂δ̄E

∣

∣

∣

1
δE + ∂Cx

∂M

∣

∣

∣

1
M1

u

U1

+ ∂Cx

∂
c̄Q

2U1

∣

∣

∣

∣

∣

1

c̄q

2U1
+ ∂Cx

∂
c̄ ˙̄α
2U1

∣

∣

∣

∣

∣

1

c̄α̇

2U1
.

(11.36)

It is shown in Eq. (11.43) that α̇ = α̇(α, δE, u/U1, c̄q/2U1) so that it is
not really possible to take a derivative with respect to α̇ while holding
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the other variables constant. However, because the resulting equations
are linear, it does not matter whether this functional relation is included
now or whether α̇ is substituted later.

Since the reference values are all constant, each derivative can
be expressed in terms of the nondimensional perturbation. For example,

∂ᾱ = ∂α (11.37)

so that
∂Cx

∂ᾱ

∣

∣

∣

∣

∣

1

=
∂Cx

∂α

∣

∣

∣

∣

∣

1

. (11.38)

Doing this for every variable and recalling that Cx = Cx1 + ∆Cx leads
to

∆Cx = ∂Cx

∂α

∣

∣

∣

1
α + ∂Cx

∂δE

∣

∣

∣

1
δE + ∂Cx

∂
u

U1

∣

∣

∣

∣

1

u

U1

+ ∂Cx

∂
c̄q

2U1

∣

∣

∣

∣

1

c̄q

2U1
+ ∂Cx

∂
c̄α̇

2U1

∣

∣

∣

∣

1

c̄α̇

2U1

(11.39)

with identical expressions for ∆Cz and ∆Cm.

At this point, the following definitions are introduced:

Cxα
= ∂Cx

∂α

∣

∣

∣

1
, CxδE

= ∂Cx

∂δE

∣

∣

∣

1
, Cxu

= ∂Cx

∂
u

U1

∣

∣

∣

∣

1

Cxq
= ∂Cx

∂
c̄q

2U1

∣

∣

∣

∣

1

, Cxα̇
= ∂Cx

∂
c̄α̇

2U1

∣

∣

∣

∣

1

.
(11.40)

With similar definitions for the Cz and Cm derivatives, the
equations for the force and moment perturbations can be written as









∆Cx

∆Cz

∆Cm









=









Cxα
CxδE

Cxu
Cxq

Cxα̇

Czα
CzδE

Czu
Czq

Czα̇

Cmα
CmδE

Cmu
Cmq

Cmα̇





























α

δE

u

U1
c̄q

2U1
c̄α̇

2U1





















(11.41)

All of the derivatives are evaluated on the reference path and are called
nondimensional stability derivatives.

By combining Eqs. (11.32) and (11.41), the linearized equations

or small perturbation equations become the following:
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u̇ =
[

Cxα
α + CxδE

δE + (Cxu
+ 2Cx1)

u

U1
(11.42)

+ Cxq

c̄q

2U1
+ Cxα̇

c̄α̇

2U1

]

q̄1S

m
− gθ

U1α̇ = U1q +
[

Czα
α + CzδE

δE + (Czu
+ 2Cz1)

u

U1
(11.43)

+ Czq

c̄q

2U1
+ Czα̇

c̄α̇

2U1

]

q̄1S

m

θ̇ = q (11.44)

q̇ =
[

Cmα
α + CmδE

δE + (Cmu
+ 2Cm1)

u

U1

+ Cmq

c̄q

2U1
+ Cmα̇

c̄α̇

2U1

]

q̄1Sc̄

Iyy

(11.45)

The stability derivatives are evaluated on the reference path.
Hence, they are all constant, as are Cx1, Cz1, and Cm1 . If Eq. (11.43)
is solved for α̇ and if α̇ is eliminated from Eqs. (11.42) and (11.45),
the result is a set of linear ordinary differential equations with constant
coefficients. This set of equations has the general matrix form

ẋ = Fx + Gu (11.46)

where the state and the control are defined as

x = [u α θ q]T , u = [δE ]. (11.47)

The matrices F and G are the coefficient matrices of the system. This
form of the equations is useful for automatic control studies.

The last step is to relate the force and moment coefficient
derivatives to the usual thrust and aerodynamic coefficients. This is
done by using Eqs. (11.19) and the definitions (11.40). To illustrate the
process, consider the derivative Cxα

. By definition,

Cxα
=

∂Cx

∂α

∣

∣

∣

∣

∣

1

. (11.48)

The coefficient Cx is related to the usual coefficients as (Eq. (11.19))

Cx = CT + CLα − CD (11.49)
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so that

Cxα
=

[

∂CL

∂α
α + CL −

∂CD

∂α

]

1

. (11.50)

Since α1 = 0,

Cxα
= CL1 −

∂CD

∂α

∣

∣

∣

∣

∣

1

= CL1 − CDα
. (11.51)

Doing this for all derivatives leads to the following results:
Cx Derivatives:

Cxα
= CL1 − CDα

CxδE

= 0

Cxu
= CTu

− CDu

Cxq
= 0

Cxα̇
= 0

(11.52)

Cz Derivatives:

Czα
= −CD1 − CLα

CzδE

= −CLδE

Czu
= −CLu

Czq
= −CLq

Czα̇
= −CLα̇

(11.53)

Cm Derivatives:

Cmα
= CA

mα

CmδE

= CA
mδE

Cmu
= CA

mu
+ CT

mu

Cmq
= CA

mq

Cmα̇
= CA

mα̇
.

(11.54)

With the exception of the u derivatives, formulas for calculating
the stability derivatives have already been derived in Chap. 8. Because
the nomenclature here is different from that in Chap. 8, the relationships
between the two sets of nomenclature are presented in App. B, along
with formulas for the u derivatives.

Values for the nondimensional stability derivatives have been
calculated for the SBJ at M = .6. The results are listed in Sec. A.5.
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11.3 Longitudinal Stability and Control

In the next two sections, the longitudinal response of an airplane to an
elevator step input and to a vertical gust are determined. First, the
small perturbation equations of motion are rewritten in a dimensional
form, and Laplace transforms are used to find the response. Next, the

stability characteristics of the airplane. Then, the results are applied to
the subsonic business jet of App. A. Finally, approximate modes are
found, and the effect of cg position is examined.

Xα = q̄1SCxα

m

ft

s2 Xu =
q̄1S(Cxu+2Cx1 )

mU1

1
s

Xα̇ =
q̄1Sc̄Cxα̇

2mU1
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s
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q̄1Sc̄Cxq

2mU1
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s

XδE
=

q̄1SCx
δE

m
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s2

Zα = q̄1SCzα

m
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s2 Zu =
q̄1S(Czu+2Cz1 )
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1
s
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q̄1Sc̄Czα̇

2mU1
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s
Zq =
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ft

s

ZδE
=

q̄1SCz
δE
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ft
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Mα = q̄1Sc̄Cmα

Iyy

1
s2 Mu =

q̄1Sc̄(Cmu+2Cm1 )

IyyU1

1
ft s

Mα̇ =
q̄1Sc̄2Cmα̇

2IyyU1

1
s

Mq =
q̄1Sc̄2Cmq

2IyyU1

1
s

MδE
=

q̄1Sc̄Cm
δE

Iyy

1
s2 .

(11.55)

Because the effects of α̇, q, and δE on the drag and the thrust have been
neglected, it is seen from Eq. (11.52) that Xα̇, Xq, and XδE

are zero.
Hence, after the pitch rate perturbation q is replaced by θ̇, Eqs. (11.42),
(11.43), and (11.45) become

u̇ = Xuu + Xαα − gθ (11.56)

U1α̇ = U1θ̇ + Zuu + Zαα + Zα̇α̇ + Zqθ̇ + ZδE
δE (11.57)

θ̈ = Muu + Mαα + Mα̇α̇ + Mqθ̇ + MδE
δE (11.58)

where the δE terms have been listed last because it is the control input.

dimensional stability derivatives:

response is examined to determine its nature and, hence, the longitudinal

(11.45) in a cleaner form. This is done by introducing the following
The first step is to write the equations of motion (11.42) through
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Values for the dimensional stability derivatives have been cal-
culated for the SBJ at M = .6. They are listed in Sec. A.5.

11.4 Response to an Elevator Step Input

Eqs. (11.56) through (11.58) are solved by using Laplace transforms
which are reviewed briefly in App. C. The Laplace transform of these
equations with zero initial conditions leads to

A(s)









u(s)

α(s)

θ(s)









= bδE(s) (11.59)

where

A(s) =









s − Xu −Xα g

−Zu (U1 − Zα̇)s − Zα −(U1 + Zq)s

−Mu −(Mα + Mα̇s) s2 − Mqs









b =









0

ZδE

MδE









(11.60)

Eqs. (11.59) can be written in the form









A11 A12 A13

A21 A22 A23

A31 A32 A33

















u(s)/δE(s)

α(s)/δE(s)

θ(s)/δE(s)









=









b1

b2

b3









(11.61)

The solution of this equation for u(s)/δE(s) follows from Cramer’s rule
to be

u(s)

δE(s)
=

∣

∣

∣

∣

∣

∣

∣

∣

b1 A12 A13

b2 A22 A23

b3 A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

. (11.62)

Similar expressions hold for α(s)/δE(s) and θ(s)/δE(s). Note that the
denominator of each solution is the determinant of the matrix A or det
A.
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For a step input δE(s) = δE/s where δE is constant, the u(s)
response is given by

u(s) =
δE

s

∣

∣

∣

∣

∣

∣

∣

∣

b1 A12 A13

b2 A22 A23

b3 A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

det A
. (11.63)

To use partial fractions to return to the time domain, the roots of the
denominator are determined from

det A = 0. (11.64)

For system matrix A in (11.60), this equation leads to the fourth power
polynomial

as4 + bs3 + cs2 + ds + e = 0 (11.65)

where

a = U1 − Zα̇

b = −[(U1 − Zα̇)Mq + Zα + Mα̇(U1 + Zq) − Xu(U1 − Zα̇)

c = ZαMq − Mα(U1 + Zq) + Xu[(U1 − Zα̇)Mq + Zα

+ Mα̇(U1 + Zq)] − XαZu

d = −Xu[ZαMq − Mα(U1 + Zq)] + Xα[ZuMq

− Mu(U1 + Zq)] + g[ZuMα̇ + Mu(U1 − Zα̇)]

e = g[ZuMα − MuZα]

(11.66)

The characteristic equation (11.65) admits four solutions (λ1,
λ2, λ3, λ4) which may be real, complex, or a combination. The expanded
form of Eq. (11.63) has the form

u(s) =
us

s
+

u1

s − λ1

+
u2

s − λ2

+
u3

s − λ3

+
u4

s − λ4

(11.67)

where the constants us, u1 etc., are functions of the λ’s. If the roots are
unique, the response in the time domain is given by

u = us + u1e
λ1t + u2e

λ2t + u3e
λ3t + u4e

λ4t (11.68)

α = αs + α1e
λ1t + α2e

λ2t + α3e
λ3t + α4e

λ4t (11.69)

θ = θs + θ1e
λ1t + θ2e

λ2t + θ3e
λ3t + θ4e

λ4t (11.70)
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These equations give the shape of the response at a single flight condi-
tion, that is, altitude, velocity, mass, thrust, center of gravity, moment
of inertia about the pitch axis, and elevator deflection.

The stability of the response is determined from the transient
or time dependent part of these equations. It is seen that real roots must
be negative and that the real parts of complex roots must be negative
to prevent the disturbances u, α, and θ from growing with time, that
is, to have a dynamically stable airplane. Hence, airplane stability is
determined by the roots of the characteristic equation det A=0.

Note that the total motion is the sum of several motions called
modes. A real root corresponds to a nonoscillatory motion as illustrated
in Fig. 11.2. A non-oscillatory mode is characterized by a single param-
eter T = −1/λ called the time constant. A complex pair λp,q = n ± iω

forms an oscillatory motion such as that shown in Fig. 11.3. An oscil-
latory mode, because it is created by two λ’s, is characterized by two
parameters: the natural frequency ωn and the damping ratio ζ . These
parameters can be obtained from the location of the roots (shown in Fig.
11.4) using the formulas

ωn = |λ| =
√

n2 + ω2

ζ = cos θ = −n

ωn

.
(11.71)

For the SBJ at M = .6 and X̄cg = .3, the coefficients (11.66)
have the values

a = 598

b = 1, 400

c = 9840

d = 128

e = 80.7

(11.72)

The characteristic equation admits two complex roots, that is,

λ1.2 = −1.16 ± 3.88j, λ3,4 = −.0059 ± .0940j. (11.73)

The first complex root represents a high-frequency, highly-damped os-
cillation called the short-period mode, and the second complex root rep-
resents a low-frequency, lightly-damped oscillation called the phugoid

mode. Both modes are stable. The natural frequency and the damping



11.4. Response to an Elevator Step Input 251

x (t)

t

Figure 11.2: Example of a Stable Real Root Mode

x (t)

t

Figure 11.3: Example of a Stable Complex Root Mode

n < 0 n

ω

ω

ωn

θ

Figure 11.4: Damping Ratio and Natural Frequency
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ratio for these modes are given by

ωnsp
= 4.05 rad/s ωnp

= .0906 rad/s

ζsp = .287 ζp = .0654
(11.74)

Note that the response has a steady part due to the deflection of the
elevator, a part due to the short period mode which dies out rapidly,
and a part due to the phugoid mode which dies out slowly. Because of
the gentle character of the phugoid mode, it is the short-period mode
that is actually controlled.

11.4.1 Approximate short-period mode

The short-period mode takes place over such a small time interval that
the velocity is approximately constant (u ∼= 0). Hence, an approximate
result can be obtained by setting u = 0 and ignoring the u̇ equation
(11.56). The approximate short-period mode is governed by

U1α̇ − U1θ̇ = Zαα + Zα̇α̇ + Zqθ̇ + ZδE
δE (11.75)

θ̈ = Mαα + Mα̇α̇ + Mq θ̇ + MδE
δE (11.76)

so that det A = 0 yields
∣

∣

∣

∣

∣

∣

(U1 − Zα̇)s − Zα −(U1 + Zq)s

−(Mα + Mα̇s) s2 − Mqs

∣

∣

∣

∣

∣

∣

= 0 (11.77)

Hence, the characteristic equation is the third-order polynomial

s(as2 + bs + c) = 0 (11.78)

where

a = U1 − Zα̇

b = −[(U1 − Zα̇)Mq + Zα + Mα̇(U1 + Zq)]

c = ZαMq − Mα(U1 + Zq)

(11.79)

The root s = 0 indicates neutral stability in pitch. Note that the ap-
proximate short-period is not affected by the derivative Mu.

For the SBJ at M = .6 and X̄cg = .3, the coefficients of the
characteristic equation are given by

a = 598, b = 1, 390, c = 9, 830. (11.80)
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Hence, the roots of the characteristic equation become

λ1,2 = −1.16 ± 3.88j (11.81)

leading to the following natural frequency and damping ratio:

ωnsp
= 4.05 rad/s

ζsp = 0.287
(11.82)

which compare well with the exact numbers (11.71).

11.4.2 Approximate phugoid mode

During the phugoid motion, the angle of attack is approximately con-
stant. Hence, an approximate result can be obtained by setting α = 0
and ignoring the moment equation (11.58). The equations of motion for
the approximate phugoid mode are given by

u̇ = +Xuu − gθ (11.83)

−U1θ̇ = Zuu + Zqθ̇ + ZδE
δE , (11.84)

Hence, the system matrix is given by
∣

∣

∣

∣

∣

∣

s − Xu g

−Zu −(U1 + Zq)s

∣

∣

∣

∣

∣

∣

= 0 (11.85)

and yields the characteristic equation

as2 + bs + c = 0 (11.86)

where
a = −(U1 + Zq)

b = Xu(U1 + Zq)

c = Zug.

(11.87)

Note that the approximate phugoid mode is not affected by the derivative
Mu.

For the SBJ at M = .6 and X̄cg = .3 the coefficients of the
characteristic equation are given by

a = −594, b = −6.70, c = −3.98. (11.88)
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Hence, the roots of the characteristic equation become

λ1,2 = −.0056 ± .0817j (11.89)

leading to the following natural frequency and damping ratio:

ωnp
= .0818 rad/s

ζp = .0689
(11.90)

The approximate results for the phugoid mode differ from the exact
results by about 10%. The approximation gets worse as the cg is moved
aft toward the neutral point.

11.5 Response to a Gust

It is desired to find the response of an airplane to a step input in the
vertical speed of the atmosphere. However, to derive the equations of
motion, it is assumed that the vertical wind speed is an arbitrary func-
tion of time, that is, for t ≥ 0

wx = 0 (ẇx = 0), wh = wh(x) (ẇh 6= 0) (11.91)

where x = x(t).

The equations of motion for flight in a moving atmosphere in
stability axes are given in Sec. 10.3 and are rewritten here as

U̇ = −WQ + (1/m)[T cos(ε0 + ᾱ1) + L sin α − D cos α

− −mg sin Θ] − ẇx cos Θ − ẇh sin Θ

Ẇ = UQ − (1/m)[T sin(ε0 + ᾱ1) + L cos α + D sin α

− mg cos Θ] − ẇx sin Θ + ẇh cos Θ

Θ̇ = Q

Q̇ = M/Iyy

(11.92)

Making the usual approximations (Sec. 11.1) and ẇx = 0 leads to

U̇ = −WQ + (1/m)(Cxq̄S − mgΘ) − ẇhΘ

Ẇ = UQ + (1/m)(Czq̄S + mg) + ẇh

Θ̇ = Q

Q̇ = M/Iyy

(11.93)
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where Cx, Cz and Cm are defined in Eq. 11.19.

Next, the linearization of these equations for small ẇh leads to

u̇ = Xuu + Xαα − gθ − Θ1ẇh

U1α̇ = U1θ̇ + Zuu + Zαα + Zα̇α̇ + Zqθ̇ + ZδE
δE + ẇh

θ̈ =

(11.94)

h

A(s)









u(s)

α(s)

θ(s)









= cswh(s) (11.95)

where A is defined in Eq. (11.60) and C is given by

c =









−Θ1

1

0









. (11.96)

Eqs. (11.95) can be written in the expanded form









A11 A12 A13

A21 A22 A23

A31 A32 A33

















u(s)/wh(s)

α(s)/wh(s)

θ(s)/wh(s)









=









c1

c2

c3









s (11.97)

h

rule to be

u(s)

wh(s)
= s

∣

∣

∣

∣

∣

∣

∣

∣

c1 A12 A13

c2 A22 A23

c3 A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

(11.98)

Similar expressions hold for α(s)/wh(s) and θ(s)/wh(s). Note that the
denominator of each solution is the determinant of the matrix A or det
A.

The solution of this equation for u(s)/w (s) follows from Cramer’s

             Taking the Laplace transform,assuming zero elevator input, and assum-
w (0) = 0 gives ing zero initial conditions including

Muu + Mαα + Mα̇α̇ + Mqθ̇ + MδE
δE.
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Consider the response to a step input in the vertical speed of
the atmosphere, that is, wh(s) = wh/s where wh is a constant. For the
u(s) response,

u(s) = wh

∣

∣

∣

∣

∣

∣

∣

∣

c1 A12 A13

c2 A22 A23

c3 A32 A33

∣

∣

∣

∣

∣

∣

∣

∣

det A
. (11.99)

To use partial fractions, the roots of the denominator are determined
from det A = 0 which leads to the same characteristic equation (11.65).
If partial fractions is performed for unique roots, the response in the
time domain is given by

u = u1e
λ1t + u2e

λ2t + u3e
λ3t + u4e

λ4t (11.100)

α = α1e
λ1t + α2e

λ2t + α3e
λ3t + α4e

λ4t (11.101)

θ = +θ1e
λ1t + θ2e

λ2t + θ3e
λ3t + θ4e

λ4t (11.102)

where the constants u1, u2 etc., are functions of the λ’s. These equations
give the shape of the response at a single flight condition and gust speed.
The stability and response discussion for this problem is the same as that
in Sec. 11.4

11.6 CG Effects

The characteristics of the short period mode and the phugoid mode are
affected by cg position, as shown in Tables 11.1 and 11.2 for the SBJ. As
the cg moves aft from .150 c̄ to .512 c̄ (the aerodynamic center or neutral
point), the short-period mode is stable, the complex root moves toward
the real axis, and the complex root splits into two stable real roots. On
the other hand, the phugoid mode is stable until the cg gets near the
aerodynamic center where it becomes unstable. The root moves away
from the real axis. For a range of cg positions, the root does not change
appreciably. When the cg nears the neutral point, the phugoid mode
becomes unstable. This is not a problem because the most aft allowable
position is .35 c̄ for the SBJ.

While it is not shown here, the approximate phugoid equations
predict that the phugoid roots do not change with cg position. Hence,
the approximate phugoid mode is not valid for all cg positions.
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Table 11.1: Effect of cg Position on the SBJ Short-period Mode

X̄ac = .512

X̄cg X̄ac − X̄cg Roots ωn ζ

.150 .3620 -1.23 ± 5.10 j 5.24 .235

.200 .3120 -1.21 ± 4.73 j 4.83 .243

.250 .2620 -1.19 ± 4.33 j 4.49 .264

.300 .2120 -1.16 ± 3.88 j 4.05 .287

.350 .1620 -1.14 ± 3.38 j 3.57 .320

.400 .1120 -1.12 ± 2.79 j 3.00 .372

.450 .0620 -1.10 ± 2.03 j 2.31 .476

.475 .0370 -1.09 ± 1.51 j 1.86 .584

.500 .0120 -1.08 ± .685 j 1.28 .845

.509 .0000 -1.71, -.503

Table 11.2: Effect of cg Position on the SBJ Phugoid Mode

X̄ac = .512

X̄cg X̄ac − X̄cg Roots ωn ζ

.150 .3620 -.0059 ± .0865 j .0867 .0676

.200 .3120 -.0059 ± .0874 j .0876 .0670

.250 .2620 -.0059 ± .0887 j .0889 .0663

.300 .2120 -.0059 ± .0940 j .0906 .0654

.350 .1620 -.0060 ± .0932 j .0933 .0639

.400 .1120 -.0060 ± .0979 j .0981 .0610

.450 .0620 -.0058 ± .1090 j .1090 .0535

.475 .0370 -.0050 ± .1210 j .1210 .0417

.500 .0120 .0016 ± .1540 j .1540 -.0102

.509 .0000 .0285 ± .1940 j .1960 -.1450
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11.7 Dynamic Lateral-Directional S& C

If the complete set of six-degree-of-freedom equations of motion (3D
flight) is linearized, it splits apart into two subsets. One subset is com-
posed of the equations for longitudinal motion, and the other subset is
composed of the equations for lateral-directional motion. The lateral-
directional motion of an airplane is associated with the side force, the
rolling moment, and the yawing moment, and its state variables are the
sideslip angle perturbation, the roll rate perturbation, and the yaw rate
perturbation, while its controls are the rudder angle perturbation and
the aileron angle perturbation.

When the linearized lateral-directional equations are investi-
gated, it is seen that three modes exist: a non-oscillatory mode called
the spiral mode which is usually unstable, a non-oscillatory mode called
the roll mode which is stable, and an oscillatory mode called the dutch

roll mode which is stable.

For the SBJ, the following results have been obtained:

Spiral mode: divergent TS = 992 s

Roll mode: convergent TR = 1.97 s

Dutch roll mode: convergent ωn = 1.63 rad/s, ζ = 0.036

Even through the spiral mode is unstable, the time constant is suffi-
ciently large that corrective action is easily taken by the pilot. Note
that while the dutch roll mode is stable, its damping is quite small.

Design problems associated with lateral-directional motion in-
clude making the spiral mode stable or at least less unstable and making
the damping of the dutch roll mode larger.

Problems

11.1 Derive the response of a first-order system with a nonzero ini-
tial conditions to a step input. For a stable system, the initial-
condition response always dies out in time.

11.2 Derive the response of a second-order system (0 < ζ < 1) with
nonzero initial conditions to a step input. Show that for a stable
system the initial-condition response dies out in time.
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11.3 Determine the response of a first-order system with zero initial con-
ditions to an impulse c δ(t) where c is a constant. Is the response
stable? Derive the steady state response for a stable system using
both the time response as t → ∞ and the final value theorem.

11.4 Determine the response of a second-order system with zero ini-
tial conditions to an impulse c δ(t) where c is a constant. Is the
response stable? Derive the steady state response for a stable sys-
tem using both the time response as t → ∞ and the final value
theorem.

11.5 Consider the motion of a pendulum having a mass m at the end of
a massless rod of length l which makes an angle Φ with the vertical.
The mass is subjected to a force of magnitude F perpendicular to
the rod.

a. Show that the equation of motion is given by

Φ̈ + p2 sin Φ = f

where p2 = g/l and f = F/ml.

b. Assume that the amplitude of the oscillation is small, that is,
Φ = Φ1 + φ where Φ1 = 0, and derive the linearized equation
of motion.

c. Is the system stable? Examine roots of characteristic equa-
tion.

d. What is the response of the system if F = 0, φ(0) 6= 0, and
φ̇(0) = 0.

e. What is the response of the system if F = 0, φ(0) = 0, and
φ̇(0) 6= 0.

f. What is the response of the system if F is an impulse, φ(0) =
0, and φ̇(0) = 0.

g. What is the response of the system if F is a step, φ(0) = 0
and φ̇(0) = 0.

11.6 The equation of motion and initial conditions for a jet-powered car
are given by

Ẍ = (g/W )[T − µW − (1/2)CDρSẊ2]
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t0 = 0, X(t0) = 0, Ẋ(t0) = Given

where g, T, µ, W, CD, ρ, S are constant. It is desired to find the
speed response of the car traveling at constant speed (Ẋn= Const)
to a small change in the thrust from a nominal value, that is,
T = Tn + τ(t). The steady-state equation of motion of the car is
given by

Ẋn =

√

Tn − µW

(1/2)CDρS
= Const, Ẍn = 0.

Assuming that X = Xn +x where x is small, linearize the equation
of motion about the nominal solution and show that

ẍ = −αẋ + (g/W )τ

where

α = (g/W )CDρS

√

Tn − µW

(1/2)CDρS
.

Also show that
x(t0) = 0, ẋ(t0) = 0.

Show that the velocity response ẋ(t) to a step input in the thrust
(τ(s) = τ/s, where τ is constant) is given by

ẋ(t) =
gτ

Wα
(1 − e−αt)

and that it is stable.

11.7 For the flight condition of Sec. A.2, calculate the nondimensional
and dimensional stability derivatives (App.B).

11.8 Using the dimensional stability derivatives in Sec. A.5, derive the
coefficients of the characteristic equation (11.65) for the SBJ. What
are the modes of the motion, and what are the constants governing
each mode (T or ζ , ωn)?

11.9 Using the dimensional stability derivatives in Sec. A.5, derive
the coefficients of the characteristic equation for the approximate
short-period mode. What are the modes of the motion, and what
are the constants governing each mode (T or ζ , ωn)?

11.10 Using the dimensional stability derivatives in Sec. A.5, derive
the coefficients of the characteristic equation for the approximate
phugoid mode. What are the modes of the motion, and what are
the constants governing each mode (T or ζ , ωn)?
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11.11 It is not really possible to input an impulse in the elevator angle.
However, it is possible to show that a short-time pulse has the
same Laplace transform as the impulse. A pulse is a step input
at t = 0 followed by a negative step input of the same magnitude
at time t = T . Show that a short-time pulse has the approximate
Laplace transform AT , where A is the magnitude of the pulse and
T is its duration.

11.12 Consider an airplane in quasi-steady level flight, and assume that
at some time instant, the airplane is disturbed from this motion by
a small aileron input. The roll mode of an airplane can be studied
by analyzing the equations

φ̇ = p

ṗ = Lpp + LδA
δA

where φ is the roll angle perturbation, p is the roll rate perturba-
tion, Lp < 0 is the constant roll damping derivative, LδA

< 0 is
the constant roll control derivative, and δA is the aileron deflection
perturbation. Assume zero initial conditions.

a. What is the response of the airplane to an aileron pulse where
δA(s) = δAT . See Prob. 11.11. Is the response stable? What
is the steady state response?

b. What is the response of the airplane to an aileron step. Is the
response stable? What is the steady state response?



Appendix A

SBJ Data and Calculations

The airplane used for all of the calculations in this text is the subsonic
business jet (SBJ) shown in Fig. A.1. It is powered by two GE CJ610-6
turbojets. This airplane resembles an early model of the Lear Jet, but
there are many differences. As an example, the airfoils have been chosen
so that aerodynamic data is readily available. The maximum take-off
weight is 13,000 lb which includes 800 lb of reserve fuel and 4,200 lb
of climb/cruise fuel. Hence, the zero-fuel weight is 8,000 lb. For the
calculations of this appendix, it is assumed that the center of gravity is
located 21.4 ft from the nose. The cg range is from 20.4 ft from the nose
to 21.8 ft from the nose, a total of 1.4 ft. In terms of the wing mean
aerodynamic chord, c̄, the cg varies between .15c̄ and .35c̄.

The geometric characteristics of the SBJ are developed in Sec.
A.2. Basic dimensions are measured from the three-view drawing (Fig,
A.1), and the remaining geometric quantities are calculated using for-
mulas presented in the text (Chap. 3). Next, the flight condition which
is used to make aerodynamic and stability and control calculations is
stated in Sec. A.2. It is level flight (γ=0) at h=30,000 ft, V = 597
ft/s (M=0.6), and W = 11,000 lb (m = 342 slugs); the cg position is
assumed to be 21.4 ft from the nose (.30c̄)

In Sec. A.3, aerodynamics of the wing, the wing-body combi-
nation, the horizontal tail, and the whole airplane are calculated using
the formulas of Chap. 8. In all calculations, the aerodynamics of the
wing-body combination are approximated by those of the entire wing
alone. Next, the trim angle of attack and the elevator deflection are cal-
culated in Sec. A.4, using the formulas derived in Chap. 9. Finally, in
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14.7

41.00

34.40

Figure A.1: Turbojet SBJ Three-view Drawing
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Sec. A.5, the reference conditions and values of the stability derivatives
needed for the dynamic longitudinal stability and control calculations
made in Chap. 11 are given.

A.1 Geometry

Fuselage geometry

Given:
Diameter d = 5.25 ft
Length l = 41.0 ft

Calculated:
Wetted area Swet = 456. ft2

Wing geometry

Given:
Airfoil NACA 64-109 (M=0)

Thickness ratio t/c = .09
Location of ac ac/c = .258
Maximum thickness xmt/c = .35
Peak suction xps/c = .40

Root chord cr = 9.00 ft
Tip chord ct = 4.50 ft
Span b/2 = 17.2 ft
Quarter-chord sweep Λqc = 13.0 deg
Exposed wing root chord cre

= 8.05 ft
Exposed wing tip chord cte = 4.90 ft
Exposed wing span be/2 = 13.3 ft
Flap span bF /2 = 9.63 ft
Average flap chord cF = 1.31 ft
Wing chord at cF c = 7.35 ft

Calculated:
Planform area S = 232. ft2

Aspect ratio A = 5.10
Taper ratio λ = .500
Leading-edge sweep Λle = 16.5 deg
Maximum-thickness sweep Λmt = 11.6 deg
Peak-suction sweep Λps = 10.8 deg
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Half-chord sweep Λhc = 9.40 deg
Mean aerodynamic chord c = 7.00 ft
y coordinate of ac η = 7.64 ft
x coordinate of ac ξ = 4.07 ft
Flap chord ratio cF /c = .178
Flap span ratio bF /b = .560
Body span ratio dB/b = .153
Root chord body length ratio cr/lB = .220
Wetted area Swet = 344. ft2

Horizontal tail geometry

Given:
Airfoil NACA 64-008 (M=0)

Thickness ratio t/c = .08
Location of ac ac/c = .260

Root chord cr = 5.00 ft
Tip chord ct = 2.35 ft
Span b/2 = 7.35 ft
Quarter-chord sweep Λqc = 25.0 deg
Average elevator chord cE = 1.18 ft
Horizontal tail chord at cE c = 3.74 ft

Calculated:
Planform area S = 54.0 ft2

Aspect ratio A = 4.00
Taper ratio λ = .470
Leading-edge sweep Λle = 29.1 deg
Half-chord sweep Λhc = 20.6 deg
Mean aerodynamic chord c = 3.83 ft
y coordinate of ac η = 3.23 ft
x coordinate of ac ξ = 2.80 ft
Elevator chord ratio cE/c = 0.316
Wetted area Swet = 108. ft2



Vertical tail geometry

Given:
Airfoil NACA 64-010

Thickness ratio t/c = .10
Root chord cr = 9.05 ft
Tip chord ct = 4.19 ft
Span b = 5.70 ft
Quarter-chord sweep Λqc = 40.0 deg

Calculated:
Planform area S = 37.7 ft2

Aspect ratio A = 1.72
Taper ratio λ = .463
Mean aerodynamic chord c = 6.92 ft
Wetted area Swet = 75.4 ft2

Nacelle geometry

Given:
Diameter d = 2.30 ft
Length l = 7.70 ft

Calculated:
Wetted area Swet = 55.6 ft2

Tip tank geometry

Given:
Diameter d = 1.75 ft
Length l = 14.0 ft

Calculated:
Wetted area Swet = 61.2 ft2

Airplane geometry

Given:
Wing incidence iW = 1.00 deg
Wing dihedral ΓW = 2.50 deg
Horizontal tail incidence iH = -2.0 deg
Horizontal tail dihedral ΓH = 0.00 deg
Thrust moment arm lT = -2.0 ft
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Nose to wing apex = 17.0 ft
Nose to wing ac = 21.1 ft
Nose to wing mac le = 19.3 ft
Nose to HT apex = 37.1 ft
Nose to HT ac = 39.9 ft
Nose to HT mac le = 38.9 ft
Wing ac to HT ac lH = 18.8 ft
Wing ac to HT ac hH = 7.88 ft

Calculated:
Wetted area Swet = 1217 ft2

A.2

The SBJ is in quasi-steady level flight at the following flight conditions:

h = 30,000 ft ρ = .000889 slug/ft3 a = 995 ft/s2

V = 597 ft/s M = .60 γ = 0.0 deg
X̄cg = .300 m = 342 slugs Iyy = 18,000 slug ft2

q̄ = 158 lb/ft2 C̄D0 = .023 K̄ = .073
CL = .299 CD = .0295 CT = .0295

A.3 Aerodynamics

Given: Flight conditions of Sec. A.2.

Wing aerodynamics

Given:
Airfoil NACA 64-109 (M=0):

α0 = -0.5 deg
clα = 0.110 1/deg
ac/c = 0.258
cmac

= -0.0175
Calculated:

α0L = -0.5 deg

FlightConditions forAerodynamic

and S&C Calculations



κ = .940
CLα

= 4.67
Cmac

= -0.0175

Wing-body aerodynamics

Calculated:
α0L = -1.5 deg
CLα

= 4.67
Cmac

= -0.0175

Horizontal tail aerodynamics

Given:
Airfoil NACA 64 008 (M=0):

α0 = 0.0 deg
clα = 0.110 1/deg
ac/c = 0.260
cmac

= 0.0
Calculated:

α0L = 0.0 deg
κ = 0.947
MH = 0.569
CLα

= 4.03
Cmac

= 0.0
τE = 0.509

Airplane aerodynamics

Calculated:
εα = 0.420
ε0 = 0.0110
CL0 = 0.0835
CLα

= 5.16
CLδE

= 0.430

X̄acWB
= 0.258
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X̄acH
= 2.93

V̄H = 0.612
CA

m0
= 0.0895

CA
mα

= -1.09
CA

mδE

= -1.13

X̄ac = 0.512
CLq

= 4.44
CA

mq
= -11.7

CLα̇
= 1.89

CA
mα̇

= -4.98

A.4 Static Longitudinal S&C, Trim

Given: Flight conditions of Sec. A.2 and the results of Sec. A.3

C̄D0 = .0230
K̄ = .0730
CL = .299
CD = .0295
CT = .0295
T = 1080 lb
CT

m0
= -.0084

Cm0 = .0811
Cmα

= -1.09
CmδE

= -1.13

α = .0389 (2.23 deg)
δE = .0341 (1.95 deg)

Conditions



A.5 Dynamic Longitudinal S&C

Given: Flight conditions of Sec. A.2 and results of Secs. A.3 and A.4

Reference conditions

CL1 = .299 CD1 = .0295 CT1 = .0295
Θ1 = 0.0 deg ᾱ1 = 2.23 deg δ̄E1 = 1.95 deg
Cx1 = 0 Cz1 = -.299 Cm1 = 0
U1 = 597 ft/s

Nondimensional and dimensional stability derivatives

CDα
= .214 Cxα

= .0848 Xα = 9.13 ft/s2

CLα
= 5.16 Cxu

= -.0626 Xu = -.0113
CA

mα
= -1.09 Cxα̇

= 0.0 Xα̇ = 0.0 ft/s
CT

mα
= 0.0 Cxq

= 0.0 Xq = 0.0 ft/s
CTu

= -.0591 CxδE

= 0.0 XδE
= 0.0 ft/s2

CDu
= .0035 Czα

= -5.19 Zα = -558 ft/s2

CLu
= .0881 Czu

= -.0881 Zu = -.124 1/s
CA

mu
= .0261 Czα̇

= -1.89 Zα̇ = -1.19 ft/s
CT

mu
= .0169 Czq

= -4.38 Zq = -2.80 ft/s
CDα̇

= 0.0 CzδE

= -.430 ZδE
= -46.2 ft/s2

CLα̇
= 1.89 Cmα

= -1.09 Mα = -15.6 1/s2

CA

mα̇
= -4.98 Cmu

= .0430 Mu = .00100 1/(ft s)
CDq

= 0.0 Cmα̇
= -4.98 Mα̇ = -.418 1/s

CLq
= 4.44 Cmq

= -11.7 Mq = -.979 1/s
CA

mq
= -11.7 CmδE

= -1.13 MδE
= -16.2 1/s2

CDδE

= 0.0

CLδE

= .430

CA

mδE

= -1.13
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Appendix B

Reference Conditions

In this appendix, formulas are given for predicting the reference force and
moment coefficients, as well as for the u derivatives. The relationship
between the stability derivatives defined in Chap. 11 and those defined
in Chap. 8 is established.

Reference Conditions

The reference flight condition is defined by h1, M1, m1g, T1, and values
of α1 and δE1 which are obtained from Sec. 9.2. The reference force
and moment coefficients are CT1 , CD1 , CL1 , and Cx1 , Cz1 , Cm1 . The lift
coefficient is obtained from Eq. (11.11), that is,

CL1 =
m1g

q̄1S
. (B.1)

Next, for a parabolic drag polar with constant coefficients,

CD1 = C̄D0 + K̄C2
L1

(B.2)

Also,

CT1 =
T1

q̄1S
. (B.3)

Finally, from Eq. (11.19)

Cx1 = CT1 − CD1 , Cz1 = −CL1 , Cm1 = 0. (B.4)

and Stability Derivatives



α Derivatives

The α derivatives are CLα
, Cmα

, and CDα
. Recall that α is the angle of

attack of the xs axis, that ᾱ is the angle of attack of the xb axis, and
that the two are related by ᾱ = ᾱ1 + α. To use the results of Chap. 8,
α there must be replaced by ᾱ.

By definition,

CLα
=

∂CL

∂α

∣

∣

∣

∣

∣

1

=
∂CL

∂ᾱ

∣

∣

∣

∣

∣

1

. (B.5)

Hence,
CLα

= CLᾱ
(M1) (B.6)

whose value is given by Eq. (8.46). The same is true for CA
mα

, that is,

CA

mα
= CA

mᾱ
(M1) (B.7)

whose value is obtained from Eq. (8.55) Finally, consider CDα
which is

defined as

CDα
=

∂CD

∂α

∣

∣

∣

∣

∣

1

=
∂CD

∂ᾱ

∣

∣

∣

∣

∣

1

. (B.8)

Hence,
CDα

= CDᾱ
(M1) (B.9)

From Eq. (8.80), it is seen that

CDᾱ
(M1) = C1(M1) + 2C2(M1)ᾱ1. (B.10)

δE Derivatives

The δE derivatives are CDδE

, CLδE

, and CMδE

. Recall that in this chapter

δE is the elevator angle perturbation and that δ̄e is the actual elevator
angle. The two are related by δ̄E = δ̄E1 +δE . To use the results of Chap.
8, δE there must be replaced by δ̄E .

For subsonic airplanes, CD is not affected by δE so that

CDδE

= 0. (B.11)

Next,

CLδE

=
∂CL

∂δE

∣

∣

∣

∣

∣

1

=
∂CL

∂δ̄E

∣

∣

∣

∣

∣

1

(B.12)
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Hence,

CLδE

= CL
δ̄E

(M1) (B.13)

whose value is given by Eq. (8.47). The same is true for CmδE

, that is,

CA

mδE

= CA

m
δ̄E

(M1) (B.14)

whose value is given by Eq. (8.56).

u Derivatives

The u derivatives arise because the force and moment coefficients are
functions of the Mach number and, hence, the velocity. For CL, it is
seen that

CLu
=

∂CL

∂ u

U1

∣

∣

∣

∣

∣

1

=
∂CL

∂M

∂M

∂V

∂V

∂ u

U1

∣

∣

∣

∣

∣

1

. (B.15)

Then, from the definition of the Mach number (M = V/a) and V =
U1 + u, this derivative becomes

CLu
=

∂CL

∂M

∣

∣

∣

∣

∣

1

M1 (B.16)

Similar results hold for Cmu
, CDu

, and CTu
that is,

Cmu
=

∂Cm

∂M

∣

∣

∣

∣

∣

1

M1, CDu
=

∂CD

∂M

∣

∣

∣

∣

∣

1

M1, CTu
=

∂CT

∂M

∣

∣

∣

∣

∣

1

M1. (B.17)

To discuss the M derivatives, consider first the CL derivative.
It is known from Chap. 8 that

CL = CL0(M) + CLα
(M)ᾱ + CLδE

(M)δ̄E

+ CLQ
(M)(c̄Q/2V ) + CLα̇

(M)(c̄ ˙̄α/2V ).
(B.18)

On the reference path, Q and ˙̄α are zero. Hence,

∂CL

∂M

∣

∣

∣

∣

∣

1

=
∂CL0

∂M

∣

∣

∣

∣

∣

1

+
∂CLα

∂M

∣

∣

∣

∣

∣

1

ᾱ1 +
∂CLδE

∂M

∣

∣

∣

∣

∣

1

δ̄E1 . (B.19)
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From Sec. 8.7, it seen that

∂CL0

∂M
=

∂CLαW

∂M
(iW − α0LW

) +
∂CLαH

∂M
(iH − ε0)ηH

SH

S
(B.20)

− CLαH

∂ε0

∂M
ηH

SH

S
∂CLα

∂M
=

∂CLα
W

∂M
+

∂CLα
H

∂M
(1 − εα)ηH

SH

S
(B.21)

− CLαH

∂εα

∂M
ηH

SH

S
∂CLδE

∂M
=

∂CLα
H

∂M
τEηH

SH

S
. (B.22)

For the wing or the horizontal tail (Sec. 3.5), it is known that

CLα
=

πA

1 +
√

1 + (A/2κ)2[1 + tan2 Λhc − M2]
(B.23)

Hence,
∂CLα

∂M
=

C2
Lα

(A/2κ)2M

πA
√

1 + (A/2κ)2[1 + tan2 Λhc − M2]
(B.24)

For the wing, it is seen that

∂CLαW

∂M
=

C2
LαW

(AW κW )2M

πAW

√

1 + (AW /2κW )2[1 + tan2 ΛhcW
− M2]

. (B.25)

The same result for the horizontal tail is given by

∂CLαH

∂M
=

∂CLαH

∂MH

∂MH

∂M
=

√
ηH

∂CLαH

∂MH

. (B.26)

where

∂CLαH

∂M
=

C2
LαH

(AHκH)2M

πAH

√

1 + (AH/2κH)2[1 + tan2 ΛhcH
− M2]

. (B.27)

Finally, the Mach number derivatives of εα and ε0 are obtained from
Sec. 8.5 as

∂εα

∂M
=

(εα)M=0

(CLα
)M=0

∂CLαW

∂M
,

∂ε0

∂M
=

∂εα

∂M
(iW − α0LW

) (B.28)
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Eqs. (B.20) through (B.28) lead to ∂CL0/∂M , ∂CLα
/∂M , and ∂CLδE

/∂M

and, hence, ∂CL/∂M .

For the derivative ∂Cm/∂M , it is recalled from Sec. 8.2 that

Cm = CT
m0

(M) + CA
m0

(M) + CA
mα

(M)α + CA
mδE

(M)δE

+ CA

mQ
(M)(c̄Q/2V ) + CA

mα̇
(M)(c̄α̇/2V )

(B.29)

where Q and ˙̄α are zero on the reference path. Hence,

∂Cm

∂M

∣

∣

∣

∣

∣

1

=
∂CT

m0

∂M

∣

∣

∣

∣

∣

1

+
∂CA

m0

∂M

∣

∣

∣

∣

∣

1

+
∂CA

mα

∂M

∣

∣

∣

∣

∣

1

ᾱ1 +
∂CA

mδE

∂M

∣

∣

∣

∣

∣

∣

1

δ̄E1. (B.30)

While ∂CT

m0
/∂M is discussed in the final paragraph, the remaining

derivatives are calculated in the same manner as the CL derivatives.
Here,

∂CA
m0

∂M
=

∂CLαW

∂M
(iW − α0LW

)(X̄cg − X̄ac) (B.31)

−
∂CLαH

∂M
(iH − ε0)ηH V̄H + CLαH

∂ε0

∂M
ηH V̄H

∂CA

mα

∂M
=

∂CLα
W

∂M
(X̄cg − X̄ac) −

∂CLα
H

∂M
(1 − εα)ηH V̄H (B.32)

+ CLαH

∂εα

∂M
ηH V̄H

∂CA

mδE

∂M
= −

∂CLα
H

∂M
τEηH V̄H . (B.33)

The derivative ∂CD/∂M is obtained from Sec. 8.11 as

∂CD

∂M
=

∂C0

∂M
+

∂C1

∂M
ᾱ +

∂C2

∂M
ᾱ2 (B.34)

where
∂C0

∂M
= 2K̄CL0

∂CL0

∂M

∂C1

∂M
= 2K̄

∂CL0

∂M
CLα

+ 2K̄CL0

∂CLα

∂M

∂C2

∂M
= 2K̄CLα

∂CLα

∂M
.

(B.35)

The last step is to compute the CT derivatives. By definition

CT =
T (h.V.P )

(1/2)ρV 2S
=

T

(kp/2)M2S
, CT

m0
= CT

lT

c̄
. (B.36)
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If it is assumed that atmospheric properties are constant, the thrust is
independent of the velocity, and the power setting is constant, the thrust
is constant. Hence,

∂CT

∂M

∣

∣

∣

∣

∣

1

= −
2CT1

M1
(B.37)

and
∂CT

m0

∂M

∣

∣

∣

∣

∣

1

= −
2CT1lT

M1c̄
. (B.38)

q Derivatives

The effect of q on the drag coefficient is negligible so that

CDq
= 0. (B.39)

By definition,

CLq
=

∂CL

∂ c̄q

2U1

∣

∣

∣

∣

∣

1

=
∂CL

∂ c̄Q

2U1

∣

∣

∣

∣

∣

∣

1

(B.40)

Hence,
CLq

= CLQ
(M1) (B.41)

whose value can be obtained from Eq. (8.67). Similarly,

CA

mq
= CA

mQ
(M1), (B.42)

whose value is given by Eq. (8.69).

α̇ Derivatives

It is assumed that the effect of α̇ on the drag coefficient is negligible so
that

CDα̇
= 0. (B.43)

The definition of CLα̇
, that is,

CLα̇
=

∂CL

∂ c̄α̇

2U1

∣

∣

∣

∣

∣

∣

1

=
∂CL

∂ c̄ ˙̄α
2U1

∣

∣

∣

∣

∣

∣

1

(B.44)

gives
CLα̇

= CL ˙̄α
(M1) (B.45)
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whose value can be obtained from Eq. (8.76). Similarly,

CA

mα̇
= CA

m ˙̄α
(M1). (B.46)

Its value is given by Eq. (8.78)
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Appendix C

Elements of Linear System

Theory

No matter what order a constant-coefficient linear system may be, its
response is the sum of the responses of first-order and second-order sys-
tems. Hence, first-order and second-order systems are the subject of this
appendix. First, Laplace transforms are presented. Laplace transforms
are used because they convert linear ordinary differential equations with
constant coefficients into algebraic polynomial equations which are easily
solved. Also, it is possible to carry out the design of single-input single-
output systems in the frequency domain, that is, in the s-plane resulting
from the Laplace transform. Next, first-order systems are investigated.
The response to a step input and the stability of the response are topics
of interest. Finally, the same analysis is performed for a second-order
system.

C.1 Laplace Transforms

The Laplace transform is formally defined as

x(s) =
∫

∞

0
e−stx(t)dt ≡ L{x(t)} (C.1)

where t > 0 and s is a complex variable. The complete derivation of
a Laplace transform is not a trivial matter; however, it is possible to
accomplish most work by using the transforms listed below.

L{cx(t)} = cL{x(t)}, c ≡ constant (C.2)



L{1} = 1/s (C.3)

L{t} = 1/s2 (C.4)

L{tn−1/(n − 1)!} = 1/sn (C.5)

L{eat
} = 1/(s − a) (C.6)

L{δ(t)} = 1, δ(t) ≡ unit impulse (C.7)

L{eatx(t)} = x(s − a) (C.8)

L

{

dx

dt

}

= −x(0) + sx(s), x(0) = x(t) at t = 0 (C.9)

L

{

d2x

dt2

}

= −ẋ(0) − sx(0) + s2x(s) (C.10)

L{sin ωt} =
ω

s2 + ω2
(C.11)

L{cos ωt} =
s

s2 + ω2
(C.12)

The reverse process, s to t, is accomplished by working backwards in the
table.

C.2 First-Order System

The standard form of a first-order system is given by

τ ẋ(t) + x(t) = u(t) (C.13)

where τ is a constant and u is the input. If zero initial conditions are
assumed, the Laplace transform of this equation leads to

τsx(s) + x(s) = u(s) (C.14)

which can be rewritten in the form of output over input as

x(s)

u(s)
=

1

τs + 1
. (C.15)

The right-hand side is called the transfer function of the system, that is,
the ratio of the output to the input.

Response to a step input

For a step input, u has the form

u(t) = c (C.16)
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where c is a constant. The corresponding Laplace transform is

u(s) = c/s (C.17)

from Eqs. (C.2) and (C.3). Then, the output is obtained from Eq. (C.15)
as

x(s) =
c

s(τs + 1)
. (C.18)

To find the response in the time domain, apply the method of
partial fractions, that is, assume

x(s) =
A1

s
+

A2

τs + 1
(C.19)

and note that

A1 = lim
s→0

sx(s) = lim
s→0

sc

s(τs + 1)
= c (C.20)

A2 = lim
s→−

1
τ

(τs + 1)x(s) = lim
s→−

1
τ

(τs + 1)c

s(τs + 1)
= −τc. (C.21)

Hence,

x(s) =
c

s
−

τc

τs + 1
=

c

s
−

c

s + 1
τ

(C.22)

and, from the Laplace transform formulas, the time response is

x(t) = c − ce−
1
τ

t = c(1 − e−
t

τ ). (C.23)

Note that the time constant T = −1/τ is the time required to reach 64%
of the steady state value.

The nature of the solution depends on the poles of the transfer
function which are the roots of the characteristic equation τs + 1 = 0.
There are three cases: (1) τ > 0, (2) τ = 0, and (3) τ < 0.

To prevent the response from increasing with time, it is nec-
essary that τ > 0 where τ is called the time constant of the response.
In the s-plane, where s is the complex number s = n + iω, this means
that the pole must lie in the left half plane as shown in Fig. C.1. The
response (C.23) also is shown in Fig. C.1. Such a system is said to be
dynamically stable because the transient part of the response (the term
involving time) goes to zero.
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Figure C.1: Response vs. Pole Location - First-Order System
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The steady state response of a stable system is obtained by
letting t → ∞ and is given by

x(∞) = c. (C.24)

Note that the steady state response is also given by

x(∞) = lim
s→0

sx(s) = lim
s→0

s
c

s(τs + 1)
= c (C.25)

which is known as the final-value theorem. It is interesting to note that
the output x(t) of the system tracks the input u = c since x(t) → c.

For the case where τ = 0, the time dependent term in Eq.
(C.23) has an exponent of −∞ so that it is zero. Hence, the response
is given by x(t) = c which is consistent with the differential equation
(C.13). Such a response is neutrally stable because it neither grows nor
decays with time. These results are illustrated in Fig. C.1.

Finally, when τ < 0, the response (C.23) is unstable because
the exponential term grows with time. See Fig. C.1.

C.3 Second-Order System

There are two forms of the second-order system depending on whether or
not the x term is present. Without the x term, the second-order system
is written as

τ ẍ(t) + ẋ(t) = u(t). (C.26)

Note that this system is first-order in ẋ, and its solution can be integrated
to obtain x, which is non-oscillatory.

The standard form of a second-order system is given by

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t) = u(t) ζ, ωn = consts ≥ 0 (C.27)

where ζ is the damping ratio, ωn is the natural frequency, and u is the
input. For zero initial conditions, Laplace transforming leads to

s2x(s) + 2ζωnsx(s) + ω2
n
x(s) = u(s) (C.28)

so that
x(s)

u(s)
=

1

s2 + 2ζωns + ω2
n

(C.29)
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where the right-hand side is the transfer function.

Response to a step input

For the step input (C.16) and its Laplace transform (C.17), the
output of the second-order system is given by

x(s) =
c

s(s2 + 2ζωns + ω2
n
)

=
c

s(s − λ1)(s − λ2)
(C.30)

where

λ1 = −ωnζ + ωn

√

ζ2 − 1 (C.31)

λ2 = −ωnζ − ωn

√

ζ2 − 1. (C.32)

The process for finding the response in the time domain, that is, the
method of partial fractions, depends on whether the roots λ1 and λ2 of
the characteristic equation s2 + 2ζωns + ω2

n = 0 are distinct or equal.

If the roots are distinct (λ1 6= λ2), the method of partial frac-
tions leads to

x(s) =
A1

s
+

A2

s − λ1

+
A3

s − λ2

(C.33)

where

A1 = lim
s→0

sx(s) =
c

λ1λ2
(C.34)

A2 = lim
s→λ1

(s − λ1)x(s) =
c

λ1(λ1 − λ2)
(C.35)

A3 = lim
s→λ2

(s − λ2)x(s) =
c

λ2(λ2 − λ1)
. (C.36)

Hence, the frequency domain response is given by

x(s) =
c

λ1λ2

1

s
+

c

λ1(λ1 − λ2)

1

s − λ1
+

c

λ2(λ2 − λ1)

1

s − λ2
(C.37)

so that the time domain response becomes

x(t) =
c

λ1λ2
+

c

λ1(λ1 − λ2)
eλ1t +

c

λ2(λ2 − λ1)
eλ2t. (C.38)

If the roots of the characteristic equations are equal (λ2 = λ1)
or repeated, the method of partial fractions changes somewhat. Here,
the transfer function becomes

x(s) =
c

s(s − λ1)2
(C.39)
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and the partial fractions decomposition is written as

x(s) =
A1

s
+

B1

s − λ1
+

B2

(s − λ1)2
=

A1

s
+

B1(s − λ1) + B2

(s − λ1)2
. (C.40)

As before,
A1 = lim

s→0
sx(s). (C.41)

However, for the repeated roots,

B2 = lim
s→λ1

(s − λ1)
2x(s) (C.42)

B1 = lim
s→λ1

d

ds
[(s − λ1)

2x(s)]. (C.43)

Hence,

A1 =
c

λ2
1

(C.44)

B1 = −
c

λ2
1

(C.45)

B2 =
c

λ1

(C.46)

and
x(s) =

c

λ2
1s

−
c

λ2
1(s − λ1)

+
c

λ1(s − λ1)2
. (C.47)

In the time domain,

x(t) =
c

λ2
1

−
c

s2
1

eλ1t +
c

λ1

teλ1t. (C.48)

The specific response of the system depends on amount of
damping ζ in the system. There four cases: (1) ζ > 1, (2) ζ = 1,
(3) 1 > ζ > 0, and (4) ζ = 0. These cases are discussed separately
below.

Case 1: ζ > 1

In this case, the poles λ1 and λ2 given by Eqs. (C.31) and
(C.32) are real and distinct. Since ζ > 1, λ1 and λ2 are both negative
and lie on the negative real axis of the complex s-plane: (see Fig. C.2).
As ζ → ∞, λ1 tends to the origin (λ1 → 0) and λ2 tends to negative
infinity (λ2 → −∞). Note that since λ1 < 0 and λ2 < 0, the response is
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stable in the sense that the time terms in (C.38) die out (tend to zero),
and the system goes into steady state. The response in the time domain
is shown in Fig. C.2. The steady-state response is obtained from Eq.
(C.38) by letting t → ∞ and is given by

x(∞) =
c

λ1λ2
=

c

ω2
n

. (C.49)

Note that the output differs from the input by the factor 1/ω2
n
, so that,

the system does not track the input.

The steady-state output can also be obtained by applying the
final value theorem

x(∞) = lim
s→0

sx(s) = s
c

s(s2 + 2ζωns + ω2
n)

=
c

ω2
n

. (C.50)

This result checks with the time-domain result (C.49).

Case 2: ζ = 1

For this case, the roots (C.31) and (C.32) are equal and given
by (Fig. C.2)

λ1 = λ2 = −ωn. (C.51)

The response in the time domain [Eq. (C.48)] becomes

x(t) =
c

ω2
n

−
c

ω2
n

e−ωnt
−

c

ωn

te−ωnt (C.52)

and is shown in Fig. C.2. The response is stable because the transient
response (the time terms in Eq. (C.52)) goes to zero. To show this, it is
necessary to apply L’Hospital’s rule to the third term in the form t/eωnt

as t → ∞. Then, the steady-state response becomes

x(∞) =
c

ω2
n

(C.53)

meaning that the output does not track the input. This result can also
be obtained by applying the final value theorem to the response (C.47),
that is

x(∞) = lim
s→0

sx(s) =
c

λ2
1

=
c

ω2
n

. (C.54)
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Case 3: 1 > ζ > 0

In this case, the poles (C.31) and (C.32) are imaginary and, in
fact, are the complex conjugates

λ1 = −ωnζ + iωn

√

1 − ζ2 (C.55)

λ2 = −ωnζ − iωn

√

1 − ζ2. (C.56)

Hence the poles lie in the left-hand s-plane as shown in Fig. C.2. For
ζ → 1, the poles move toward the real axis, and for ζ → 0, the poles
move towards the imaginary axis.

For imaginary poles which are distinct, the response is oscilla-
tory as shown by writing the roots as

λ1 = n + iω (C.57)

λ2 = n − iω (C.58)

where
n = −ωnζ, ω = ωn

√

1 − ζ2. (C.59)

Then, if Euler’s formula

eiφ = cos φ + i sin φ (C.60)

is applied, the response in the time domain (C.38) becomes (Fig. C.2)

x(t) =
c

n2 + ω2

[

1 − ent(cos ωt−
n

ω
sin ωt)

]

(C.61)

or
x(t) = c

ω2
n

1 − e−ωnζt(cos ωn

√
1 − ζ2 t

+ ζ√
1−ζ2

sin ωn

√
1 − ζ2 t )

]

(C.62)

or

x(t) =
c

ω2
n

[

1 −
e−ωnζt

√
1 − ζ2

sin(ωn

√

1 − ζ2t + φ)

]

(C.63)

where φ = sin−1
√

1 − ζ2 is called the phase angle.

It is easily seen that the response is stable because the expo-
nential term goes to zero as time becomes infinite. Also, the steady-state
response is given by

x(∞) =
c

ω2
n

(C.64)

[
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a result which can be verified by applying the final-value theorem to the
response (C.30).

Case 4: ζ = 0

Here, the poles (C.31) and (C.32) are the complex conjugates

λ1 = iωn (C.65)

λ2 = −iωn, (C.66)

but they lie on the imaginary axis (Fig. C.2) because there is no damp-
ing. The time response is obtained from Eq. (C.61) by setting n = 0
and is given by

x(t) =
c

ω2
n

[1 − cos ωnt] (C.67)

and is plotted in Fig. C.2. From this result, it is seen that the response
is a pure oscillation. Such a response is neither stable nor unstable and
is said to be neutrally stable. Since the time term (transient response)
does not vanish as t → ∞, there is no steady-state response. Also, the
final value theorem does not apply because the system is not stable.

Remark: In the event the damping is negative (ζ < 0), the transient
terms grow with time, and the system is unstable. See Fig. C.2.
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Figure C.2: Response vs. Pole Location - Second-Order System
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Acceleration,
body axes, 230
horizontal plane, 169
wind axes, 22

Aerodynamic center
airfoil, 190
airplane, 203
wing, 192
wing-body combination, 194

Aerodynamic force, 21

pitching moment,
202

Aircraft sizing, 13

Airfoil
aerodynamic center, 190
angle of attack, 55, 190, 196
center of pressure, 55
chord, 54
control deflection, 196
control effectiveness, 197
drag coefficient 55
lift coefficient 55
lift-curve slope, 56
maximum lift coefficient, 56
pitching moment about ac, 190
thickness, 54
thickness ratio, 54
zero-lift angle of attack, 56

Airplane
aerodynamic center, 203
aerodynamic pitching moment,

202
angle of attack, 18, 59, 199
center of gravity location, 199
direct thrust moment, 204
drag coefficient, 50

equivalent parasite area
method, 60

friction drag coefficient, 60
induced drag coefficient, 63
lift coefficient, 201
lift-curve slope, 201
pitching moment, 205
stability derivatives, 244, 247,

273
thrust pitching moment, 204
wave drag coefficient, 62
zero-lift angle of attack, 58, 59

Altitude, 18
Angle of attack

airfoil, 55, 190, 196
airplane, 18, 59, 199
horizontal tail, 200
wing, 58

Aspect ratio, 57
Atmosphere

exponential, 47
standard, 44

Axes systems, 2, 3, 233

Bank angle, 30, 168
Binomial expansion, 31
Body axes system

definition, 18

Aerodynamic

stability, 233

Ceiling, 84, 98, 112
Center of gravity, 18
Center of pressure, 55
CG effects

dynamic stability, 256

regular, 229
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Characteristic equation, 249
Chord, 54
Chord plane, 53, 59
Climb angle, 96, 119
Climb distance, 97, 118
Climb fuel, 97, 119
Climb time, 97, 119, 163
Climbing flight, 95, 118
Coefficient of rolling friction, 139
Constant altitude turn

bank angle, 168, 180
corner speed, 177, 181
distance, 172
equations of motion, 170, 171
fuel, 172
load factor, 171
load factor limit, 177, 180
maximum lift to drag ratio

speed, 179
minimum thrust, 111, 179
optimal turns, 172
parabolic drag, 179
quasi-steady, 171, 178
radius, 172, 180
stall limit, 177, 180
time, 172
turn rate, 172, 180

Constant equivalent airspeed
climb, 105, 122

Constant thrust cruise, 124
Constant velocity cruise, 94, 116
Constant velocity glide, 127
Control

deflection, 196
effectiveness, 197

planform area, 198
Control variables, 24
Coordinate systems, 18, 168, 229,

233
Cruise 85, 94, 113, 116, 123, 124

Damping ratio, 250, 284
Descending flight, 106, 123, 126
Dimensional stability derivatives,

244
Direct thrust moment, 204
Distance

climb, 97, 118
constant altitude turn, 172
cruise, 87, 113
landing, 130
take-off, 129

Downwash

slope, 194
Drag, 21, 68, 208
Drag coefficient

airfoil, 55
definition, 50
equivalent parasite area

method, 60
functional relation, 50, 60,
parabolic drag polar, 66

Drag polar
general, 50
trimmed, 209

Constant lift coefficient cruise, 123
Constant lift coefficient glide, 126

static stability, 217
trim conditions, 214

translational, 230
vertical plane, 22

Dynamic pressure limit, 81
Dynamic stability and control

cg effects, 256

Dutch roll mode, 258
Dynamic equations

rotational, 231

angle,  194
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description, 12
lateral-directional, 258
linearized equations of motion,

245, 247
longitudinal, 247
stability derivatives, 244, 246,

247

Elevator deflection, 196
Elevator effectiveness, 197
Time factor, 86, 113
Equations of motion

constant altitude turn, 170, 171
dimensional stability deriva-

tives, 244
flat earth model, 17
flight in a horizontal plane, 170,

171
flight in a vertical plane, 23, 26,

33, 234, 235
gliding flight, 125
landing, 140, 144
linearized, 245, 247
quasi-steady, 26, 245, 247
6DOF, 7, 171
spherical earth, 30
take-off, 140, 144
3DOF, 23, 29, 30, 170

Equivalent airspeed, 80
Equivalent parasite area method,

60

171
Flight in a vertical plane, 23, 26,

33, 234, 235

Flight path inclination, 18

Friction drag coefficient, 60

Fuel factor, 96, 119

Fuel weight flow rate, 23

Functional relations

3DOF equations, 24

6DOF equations, 188, 132, 134

Gliding flight

constant lift coefficient, 126

constant velocity, 127

distance and time, 125

equations of motion, 125

maximum distance, 126

maximum time, 126

Ground axes system, 18

Ground run distance

landing, 142

take-off, 141

Heading angle, 29, 168

High-lift devices

flaps, 131

slats, 131

High performance climb

minimum time climb, 164

specific energy, 164

specific excess power, 163

time to climb, 163

Hinge moment, 219

Horizontail tail

angle of attack, 200

elevator deflection, 196

Exponential atmosphere, 47

Flat earth model, 17
Flight envelope, 83, 112
Flight in a horizontal plane, 170, elevator effectiveness, 197

incidence, 199
lift coefficient, 201

volume coefficient, 202
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Indicated airspeed, 80
Induced drag coefficient, 63
Induced drag factor, 66
Inertial quantities

acceleration, 20
position, 19
velocity, 19

Kinematic equations
horizontal plane,
rotational, 231
translational, 230
vertical plane, 20

Landing
equations of motion, 140, 144
ground run distance, 142
landing distance, 130
touchdown speed, 130

Lateral-directional stability and

dynamic, 258
static, 224

Level flight speeds, 84, 112
Lift

airplane, 201
definition, 50

Lift coefficient
definition, 50
horizontal tail, 200
wing, 200

Load factor, 179
Load factor limit, 179
Local horizon axes system, 18
Longitudinal stability and control

dynamic, 247
static, 212

Mach number, 50
Maneuver point, 224
Mathematical degrees of freedom,

24
Maximum cruise distance, 91, 95,

114, 126
Maximum dynamic pressure speed,

81
Maximum lift coefficient

airfoil, 191
flaps, 138
slats, 138

Maximum lift to drag ratio, 66, 110
Maximum lift to drag ratio speed,

68, 110
Maximum Mach number speed, 81
Maximum cruise time, 93, 115, 126
Mean aerodynamic chord, 57, 192,

194
Minimum distance climb, 101, 120
Minimum drag, 68
Minimum drag velocity, 68
Minimum fuel climb, 104, 120
Minimum thrust, 111, 179

and control

Lift-curve slope
airfoil, 56
airplane, 53, 201
wing, 58
wing-body combination, 194

Lift to drag ratio, 51
Linearized equations of motion,

245, 247
horizontal tail, 199
wing, 59

Incidence

Minimum time climb, 104, 121, 163
Moment of inertia, 186

Natural frequency, 250
Neutral point, 217
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climb distance, 97, 118
climb fuel, 97, 119
climb time, 97, 119
climbing flight, 95, 118
combat ceiling, 101
cruise ceiling, 98
constant equivalent airspeed

climb, 105, 122
constant velocity cruise, 94,

116
cruise, 85, 114
cruise distance, 87, 113
cruise time, 87
descending flight, 106, 123,

125,
distance factor, 86
flight envelope, 83, 112
fuel factor, 96, 119
level flight speeds, 84, 112
maximum distance cruise, 91,

114
maximum time cruise, 93, 115

Pitching moment about ac
airfoil, 190
wing, 192
wing-body combination, 194

Pitching moment stability deriva-
tives, 203

Plane of symmetry, 17
Planform area, 57
Position vector, 19, 230
Power setting, 24, 70

Quasi-steady flight, 26, 171, 213

Rate of climb, 96, 119
Reaction force, 138
Regular body axes, 229
Response to elevator input, 248
Reynolds number, 50
Roll mode, 258
Root chord, 57
Rotation speed, 129
Rotational dynamic equations,

Rotational kimematic equations,
231

Service ceiling, 98
SBJ, 264

Optimal turns, 172

Parabolic drag polar, 66, 109, 179
Performance

ceiling, 84, 112
climb angle, 96, 119

minimum distance climb, 101,
120

minimum fuel climb, 104, 122
minimum time climb, 104, 121
rate of climb, 96, 119

service ceiling, 98
time factor, 86

Phugoid mode
approximate, 253
exact, 250

Pitch angle, 186, 228
Pitch rate, 186, 231
Pitching moment

aerodynamic, 202
airplane, 205
coordinate system, 199
thrust, 204

Short-period mode
approximate, 252
exact, 250

Simulation, 14

231
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Speed
corner, 177, 181
liftoff, 129
maximum dynamic pressure,

81
maximum Mach number, 81
rotation, 129
stall, 81
touchdown, 130

Spherical earth, 30
Spiral mode, 257
Stability axes, 233
Stability and control

dynamic, 12, 237
lateral-directional, 11, 224, 258
longitudinal, 11, 212
static, 11, 215

Stability derivatives
dimensional, 247
nondimensional, 244, 273

Stall limit
constant altitude turn, 177, 180
cruise and climb, 81

Stall speed, 81

distance, 129
equations of motion, 140, 144
ground run distance, 141
liftoff speed, 129
reaction force, 138
rotation speed, 129

Taper ratio, 57
Thickness, 54
3DOF equations of motion

functional relations, 24
horizontal plane, 170
quasi-steady, 26, 171
spherical earth, 30
three-dimensional, 29
vertical plane, 23

Three-dimensional flight, 29
Thrust, 20
Thrust angle of attack, 21
Thrust pitching moment, 204

6DOF equations of motion
functional relations, 188, 232,

234
regular body axes, 232
stability axes, 234
wind axes, 187

Span, 57
Specific energy, 164
Specific excess power, 163
Specific fuel consumption, 23, 24,

69

Standard atmosphere, 44
State variables, 24

Static stability and control
cg effects, 214

lateral-directional, 11, 224,

longitudinal, 11, 212, 247
Static margin, 217
Stick force, 218
Stick force gradient, 230
Stratosphere, 45
Sweep angle, 57

Tail efficiency factor, 195
Take-off

coefficient of rolling friction,
139

Time
climb, 97, 119, 163
constant altitude turn, 172
cruise, 87, 43
high-performance airplane, 163

Time constant, 250
Time to climb, 97, 119, 163

258

Tip chord, wing, 57
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Trimmed drag polar, 208
Tropopause, 45
Troposphere, 45
True airspeed, 80
Turbofan engine, 5, 70
Turbojet engine, 5, 70
Turn radius, 172, 180
Turn rate, 172, 180

Unit vector
orientations, 19, 228
rates, 19, 228

Untrimmed drag polar, 64

Velocity for minimum drag, 68
Volume coefficient, 202

Wave drag coefficient, 62
Weight equation, 23, 231

zero-lift plane, 59
Wing-body combination

aerodynamic center, 194
lift-curve slope, 194
pitching moment about ac, 194

Zero-lift angle of attack
airfoil, 56
airplane, 59
wing, 58

Zero-lift drag coefficient, 66
Zero-lift plane, 59

Touchdown speed, 130
Trajectory analysis, 8
Translational dynamic equations,

230
Translational kinematic equations,

230
Trim conditions

angle of attack, 214
cg effects, 214
elevator angle, 214

Trim tab, 220
Trim tab angle, 221

chord plane, 53, 59
control deflection, 196
control effectiveness, 197
control planform area, 198
incidence, 59
lift coefficient, 200

mean aerodynamic chord, 57,
192, 194

pitching moment about ac, 192
planform area, 57
root chord, 57
span, 57
sweep angle, 57
taper ratio, 57
tip chord, 57
zero-lift angle of attack, 58

Wetted area, 62
Wind axes system, 18

Wing
aerodynamic center, 192
angle of attack, 58
aspect ratio, 57

lift-curve slope, 58, 201
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